Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez, S A
dc.contributor.authorCampillo Jiménez, Javier Eduardo
dc.contributor.authorMartínez-Santos, J C
dc.date.accessioned2020-11-04T20:52:36Z
dc.date.available2020-11-04T20:52:36Z
dc.date.issued2003-01
dc.date.submitted2020-11-03
dc.identifier.citationSánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9534
dc.description.abstractOver 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoidance in passenger boats. Advances in parallel computing, graphic processing unit technology and deep learning have facilitated real-time image processing. The main objective of this study was to compare the performance metrics for different deep learning algorithms using pre-trained data sets. The algorithms used were: faster region-based convolutional neural networks, region-based fully convolutional network, and single shot multibox detector using the feature extractors: residual neural network, inception and convolutional neural networks for mobile vision applications to detect generic boats in confined waterways. These models were coded in Python programming language, using the framework Tensorflow and OpenCV library for image processing. The algorithms were pre-trained using the free images database posted on the web, Microsoft COCO. The use of these pre-trained models allowed making use of computers without graphic processing unit. As a result, it was found that the faster region-based convolutional neural networks and region-based fully convolutional network method compared to the single shot multibox detector method offer a small advantage precision if speed detection is not required, but the single shot multibox detector method is useful for case detectors in real time, however it did not perform as accurate when detecting small objects.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series, Volume 1448, Issue 1, article id. 012003 (2020).spa
dc.titleUse of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow frameworkspa
dcterms.bibliographicCitationWang L & Sng D 2018 Deep learning algorithms with applications to video analytics for a smart city: A survey SciRate 11 8spa
dcterms.bibliographicCitationVal Román J L 2012 Industria 4.0. La transformación digital de la industria (Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII)spa
dcterms.bibliographicCitationPérez E 2017 Diseño de una metodología para el procesamiento de imágenes mamográficas basada en técnicas de aprendizaje profundo (Madrid: Universidad Politécnica de Madrid)spa
dcterms.bibliographicCitationMedina C, Cuellar S & Mojica P 2017 Inteligencia artificial y control del espacio aéreo (Colombia: Superintendencia de Industria y Comercio)spa
dcterms.bibliographicCitationDepartment of Homeland Security and Coast Guard 2014 Accidents in small vessels Recreational Boating Statistics (United State of America: Department of Homeland Security and Coast Guard)spa
dcterms.bibliographicCitationSundar K S, Bonta L R, Baruah P K & Sankara S S 2018 Evaluating training time of Inception-v3 and Resnet-50,101 models using TensorFlow across CPU and GPU Second International Conference on Electronics, Communication and Aerospace Technology (Coimbatore: IEEE)spa
dcterms.bibliographicCitationJ Huang, et al. 2017 Speed/Accuracy trade-offs for modern convolutional object detectors Conference on Computer Vision and Pattern Recognition (Honolulu: IEEE)spa
dcterms.bibliographicCitationRezatofighi H, et al. 2019 Generalized intersection over union: a metric and a loss for bounding box regression Conference on Computer Vision and Pattern Recognition (California: IEEE)spa
dcterms.bibliographicCitationLi Y, Huang C, Ding L, Li Z, Pan Y & Gao X 2019 Deep learning in bioinformatics: Introduction, application, and perspective in the big data era Methods 166 4spa
dcterms.bibliographicCitationBlanco-Filgueira B, et al. 2019 Deep learning-based multiple object visual tracking on embedded system for iot and mobile edge computing applications IEEE Internet of Things Journal 6(3) 5423spa
dcterms.bibliographicCitationLin T Y, et al. 2014 Microsoft coco: Common objects in context European Conference on Computer Vision (Zurich: Springer)spa
dcterms.bibliographicCitationRedmon J & Farhadi A 2016 YOLO9000: Better, faster, stronger Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)spa
dcterms.bibliographicCitationRen S, et al.2017 Faster R-CNN: To- wards real-time object detection with region proposal networks IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6) 1137spa
dcterms.bibliographicCitationDai J, et al. 2016 R-FCN: Object detection region-based fully via convolutional networks 30th Conference on Neural Information Processing Systems (Barcelona: Neural Information Processing Systems)spa
dcterms.bibliographicCitationW Liu, D Angelov, D Erhan, C Szegedy 2015 SSD: single shot multibox detector CoRR Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1088/1742-6596/1448/1/012003
dc.subject.keywordsAprendizaje profundospa
dc.subject.keywordsProcesamiento digital de imágenesspa
dc.subject.keywordsAccidentes de embarcacionesspa
dc.subject.keywordsComputación paralelaspa
dc.subject.keywordsProcesamiento de imágenes en tiempo realspa
dc.subject.keywordsDeep learningspa
dc.subject.keywordsDigital image processingspa
dc.subject.keywordsBoat accidentsspa
dc.subject.keywordsParallel computingspa
dc.subject.keywordsReal-time image processingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.