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This paper proposes a convex approximation approach for solving the optimal power flow (OPF) problem
in direct current (DC) networks with constant power loads by using a sequential quadratic programming
approach. A linearization method based on the Taylor series is used for the convexification of the power
balance equations. For selecting the best candidate nodes for optimal location of distributed generators
(DGs) on a DC network, a relaxation of the binary variables that represent the DGs location is proposed.
This relaxation allows identifying the most important nodes for reducing power losses as well as the
unimportant nodes. The optimal solution obtained by the proposed convex model is the best possible
solution and serves for adjusting combinatorial optimization techniques for recovering the binary char-
acteristics of the decision variables. The solution of the non-convex OPF model is achieved via GAMS soft-
ware in conjunction with the CONOPT solver; in addition the sequential quadratic programming model is
solved via quadprog from MATLAB for reducing the estimation errors in terms of calculation of the power
losses. To compare the results of the proposed convex model, three metaheuristic approaches were
employed using genetic algorithms, particle swarm optimization, continuous genetic algorithms, and
black hole optimizers.
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1. Introduction
1.1. General context

All over the world, electrical networks are the motor of
the economy [3,33,37,42]|. These grids are essential for providing
other primary services to the population, such as: telecommunica-
tions, transportation, water, and wireless connectivity
[13,19,20,23,35,43], among others. Nevertheless, the design of
these networks is not an easy task for utility companies, since their
planning, construction, operation and management require careful
studies for making them economically profitable in the long term
[15,17,21,22]. Electrical networks can be designed in alternating
current (AC), direct current (DC) or hybrid configurations [34], in
order to provide reliable, secure and quality service to all end-
users [18]; one of the main challenge for utility companies is
employing/proposing efficient mathematical models to analyze
their electrical networks for making investments in them [4]. This
paper provides a new mathematical tool to help utilities in their
planning and operation, paying special attention to the DC para-
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digm as a promising approach for designing modern electrical
networks.

1.2. Motivation

The optimal design of DC grids, from high-voltage to low-
voltage applications, has become an important topic in the special-
ized literature [10,32], since these grids allow integrating multiple
distributed energy resources directly to the DC network by avoid-
ing additional power electronic inverters [11,24], which clearly
permits a reduction of costs in terms of installation, operation
and management [2,18]. The biggest advantage of DC networks
in comparison to their AC counterparts is the elimination of the
concepts of reactive power and frequency [31], which makes their
control and operation easier [2]. Nevertheless, for both types of
electrical networks, power flow analysis is the most important tool
for knowing the steady state behavior of the grid when a determi-
nate set of power injections, consumptions and grid topology is
given [30]. This has given rise to the motivation of this paper,
which focuses on providing an efficient method for solving the
optimal power flow problem for a DC grid in the presence of mul-
tiple distributed generators, so as to identify their optimal
locations.
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1.3. Literature survey

For DC networks there have recently been presented exact
proofs of the convergence of the well-known Newton-Raphson
[8] and Gauss-Seidel (successive approximation) methods [7] for
power flow analysis; furthermore, a linear approximation has also
been proposed based on Taylor’s series [26,27,31] with results
comparable to those of the conventional iterative methods. Never-
theless, when the main interest is to determine the best set of
power injections to reduce power losses, then the optimal power
flow (OPF) analysis appears to be the main tool [1]. Note that the
OPF model for a DC network is a nonlinear non-convex problem,
harder to solve efficiently [36]; for this reason, there have been
recently proposed convex approximations based on semidefinite
programming methods [11,9,25], second-order cone programming
approaches [16], as well as approaches based on Taylor expansions
[28] and sequential quadratic approximations based on the lin-
earizations of Taylor and Newton-Raphson [30].

When we concentrate on identifying recent developments in DC
grid planning, a few works related can be found in the specialized
literature: [2] presented a general design for a hybrid AC-DC net-
work for minimizing the investment and operating costs during
the planning period. Moreover, [ 18] compared AC and DC planning
models, illustrating their most important aspects from the eco-
nomical and technical points of view. In [32], a planning approach
for the design of DC microgrids with photovoltaic generation was
presented. Nevertheless, the location of renewable generation
and the DC grid topology correspond to well-known inputs to the
planning problem, which reduces its mathematical complexity.
Note that the optimal location and sizing of DGs in a DC grid has
not been well-studied in the specialized literature, which thus con-
stitutes the contribution of the research presented below.

1.4. Contribution

After this review of the state of the art, we see that no results
about the optimal location of the power sources in a DC network
have been reported in the specialized literature, except [32], where
DC grids with photovoltaic (PV) generators are studied. Based on
this research gap, the present paper proposes a reformulation of
the OPF problem in conjunction with the relaxation of the binary
characteristic of the variables associated to the optimal location
of power sources, so as to obtain a convex formulation that allows
identifying the best candidate nodes for the optimal location of the
power sources in a DC network. The main difference of the pro-
posed quadratic convex reformulation in comparison with the
aforementioned convex OPF methods (see [30]) lies in the possibil-
ity of detecting the best set of candidate nodes for the allocation of
the power sources in conjunction with the option of determining
their optimal sizes by using any discretization method for treating
all the binary variables that represents this problem.

1.5. Organization of the present paper

The remainder of this paper is organized as follows: Section 2
explores the classical formulation of the optimal power flow prob-
lem as well as the proposed convex reformulation using a method
based on the Taylor series expansion. Section 3 presents the con-
ventional mixed-integer nonlinear formulation of the problem of
the optimal location of the power sources in a DC network. In addi-
tion, the proposed convex formulation is presented. Section 4 pre-
sents the main characteristics of two distribution test feeders, one
composed of 21 and the other of 69 nodes, and multiple constant
power loads. Section 5 provides all the details related to the com-
putational implementation and results. Lastly, Section 6 presents

the main conclusions derived from this research as well as possible
avenues for future research.

2. Optimal power flow modeling

The mathematical modeling of the OPF problem is a nonlinear
non-convex minimization problem [16], which tries to find the
best combination of voltage variables and power generation to
reduce the total power losses on the grid’s conductors [28]. This
section presents the conventional OPF model and the proposed
convex approximation.

2.1. Nonlinear OPF modeling

The complete formulation of the nonlinear non-convex OPF
problem is presented below [30].

Objective function:

minz = zn:zn:cijl/iﬂj, (1)

i=1 j=1

where G is the i component of the conductance matrix, z; and ;
represent the voltage values at nodes i and j, respectively, and z is
the value of the objective function associated to the total power
losses of the network [31]. Note that n is the total number of nodes.

Set of constraints:

n
o= 3 Gy Vi)
=1

v < v <P Vie ' (3)
PEMN < pE < pET Vi A (4)

where p? and p{ are the power generation and consumptions con-
nected at node i,p¥™" and p#™* are the minimum and maximum
power generation capabilities at node i; while »™" and »™* are
the lower and upper bounds of the voltage profile at each node.
Note that .4 is the set of nodes of the DC network.

In the mathematical model given by (1)-(4), the expression (1)
gives the objective function associated to the minimization of the
power loss, (2) is the power balance equation which corresponds
to Kirchhoff’s laws in power form (Tellegen'’s first theorem), while
(3) and (4) are the voltage regulation and power generation capa-
bility constraints, respectively.

It is important to highlight that there is only one constraint that
makes the OFP model (1)-(4) a nonlinear non-convex formulation:
the power balance equation (see Eq. (2)) [36]. Nevertheless, not all
the constraints contained in (2) are nonlinear. Some of them are
associated to the slack nodes (voltage controlled nodes) and are
linear [6]. For this reason, the set of nodes ./ can be divided as
7 + 9, where & represents the set of slack nodes and 2 the set
of remaining nodes (demand nodes, i.e., 2 = 4/ — ). Based on
these considerations, the power balance equation can be split as
follows [30].

n
p‘lg — pld = UiZGijvj Vie S, (53)
=
n
P —pi =0 GimVm Vke 2, (5b)
m=1

Here, v; in (5a) is the voltage profile at the voltage controlled nodes,
which is constant and well-defined [7]. In addition, the presence of
p on the demand nodes implies that there is the possibility of inter-
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connecting power sources over these nodes without the ability to
control their voltage profile, i.e., small-distributed generation [11].

The main challenge to the convexification of the OPF model is
obtaining a linear equivalent representation of the nonlinear con-
straint given in (5b)[5], which is one of the main contributions of
the present paper, and will be presented in the following section.

2.2. Convex approximation for the OPF problem

For transforming the OPF model into a convex approximation,
let us to consider a simple product of continuous variables as fol-
lows [31].

fx.y)=xy, (6)

where the main interest is to find a linear representation of f(x,y)
around the operating point (xo,Y,). To do this, we use the Taylor’s
series expansion around this point, as proposed in [31], which yields

fx.y) = xyo + X0y — XoYo + O(X.Y), (7)

where (0(x,y) corresponds to the higher-order terms of the Taylor’s
series expansion [30]; nevertheless, for the purposes of power flow
analysis, those terms can be omitted due to the fact that their con-
tribution is small in comparison to the linear component [28].

Now, note that if we change the product xy to the product v, v,
around (o, Umo), then the expression (5b) can be transformed by
(7) as presented below.

n
P =D = Gin(VkoUm + Uno Uk — Vko¥mo); Yk € 7, (8)
m=1
This is clearly a linear set of constraints, which can turn the OPF
model into a convex model. For completeness, the full mathematical
model with the proposed convex approximation is presented below.

Model 1 (Convex OPF model for DC networks).

minz = zn:i:c,j viv;,

i=1 j=1

pf-pl =) Gyvies, 9)

j=1

n
P — D8 = Gen(Vio¥Un + Uno ¥k — Uio¥mo); Vk € 7,
m=1

R R N
plg.mm g plg < p}g‘max Vi e (/‘/-7

Remark 1. The mathematical model (9) is a convex approximation
of the optimal power flow problem that has a quadratic positive
definite function, two affine hyperplanes, and two linear
inequalities.

Remark 2. The linear hyperplanes (5a) and (8) may also be used
for solving the classical power flow problem by employing a linear
alternative form in comparison to the method based on the Taylor
series used in [31] or the conventional Newton-Raphson form pre-
sented in [8].

Remark 3. The main advantage of the proposed convex reformula-
tion of the OPF model in comparison to the classical semidefinite
[25] or second-order cone approximations [16] lies in the fact that
the model (9) does not create n? variables associated to the voltage
profiles.

Finally, note that the proposed model given by (9) is different
from previous work reported by [28,30], since the way the Taylor’s
series is employed here uses the product of linear variables for the
linearization, whereas [28] uses a transformation of the hyperbola
1 around xo; besides, [30] proposed a convex model based on New-
ton-Raphson method as well as by using the voltage-current rep-
resentation of the OPF model instead of the conventional power
balance formulation, which make both models different from the
approach proposed in the present paper.

3. Optimal locations and sizes of the power sources

Determining the optimal locations and sizes of the power
sources in a DC network is a non-convex mixed-integer nonlinear
programming (MINLP) model [12], where continuous variables
are associated to the OPF model, i.e., expressions (1)-(4), and inte-
ger (binary) variables are associated to the possible locations of
distributed generators in the network [38]. In this section, we pre-
sent the exact MINLP model as well as the proposed convex relax-
ation for determining the set of best nodes for possible locations of
power sources in a DC grid.

3.1. The exact MINLP model

To obtain an exact model that represents the optimal locations
and sizes of the power sources in a DC network it is only necessary
to add binary variables to the expression (4) when the power bal-
ance equation is split as presented in (5a) and (5b). The complete
mathematical model of this problem is presented below.

Model 2 (Exact MINLP model).

minz = zn:znjcu ViV,

i=1 j=1

n
p? —pld = Uizcijyj Vie y,

j=1

n
d L
P} —Pi = Y _GimUn Vi€ 9, (10)
m=1
Iy < UMY €
,min ,max \/»
jod pE<pi" ™ Vie s,
ka‘g.mln : < p,I%,mElX vk e 97

7

<
<

max
X < Nps )
k=

1] 19|
S pf<ad pf,
k=1 k=1

X €40,1};Vk € 2,

Here, Ng;‘”‘ is a scalar, the number of power sources available for
installation, « is the percentage factor of power generation allowed
for the power sources into the DC grid, i.e., « = 0.6 implies that a
maximum of 60% of the power consumption can be provided by
distributed generation. Note that x; is a binary variable associated
to the possibility of location (x, = 1) of a distributed generation at
node k, or not (x, = 0).

Remark 4. The MINLP model (10) is non-convex due to the
presence of the power balance constraint associated to the demand
nodes as well as the binary variables related to the locations of the
power sources.
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For relaxing the model (10) with nonlinear sensitivity factor for
the optimal selection of the best nodes for locating distributed gen-
erators in the DC network, we propose that the binary nature of x
must be relaxed as follows.

0<x<1;Vke g (11)

The relaxation employed in (11) allows allocating multiple genera-
tors in the network in order to identify the most important nodes
for the optimal location of distributed generators in the grid. With
this consideration, we propose the convex relaxation for doing this
task in the following section.

3.2. Proposed convex relaxation

The proposed convex relaxation corresponds to the inclusion in
the convex OPF model defined by (9) of the set of constraints asso-
ciated to the optimal location of power sources as presented in (11)
by considering that the nature of the binary variable is relaxed as
in (11). Based on these considerations, the proposed convex model
takes the following form.

Model 3 (Relaxed convex model).

minz = iiGu viv;,

i=1 j=1

n
Pf =Dk =D _Gim(Vio¥m + Vmo ¥k — Vio¥mo); VK € 7,

m=1
n
p:g_p:j = inGijyj Vle@, (12)
=
VN <y K UMY e N,
p}g.mm g p:g < plg,max Vl c V.,
xpf™ < pt <P Vk € 2,
|2|
Sone< N
k=1
2| 2|

> pE <o) i,
k=1 k=1

0<x <1;Vke g,

Remark 5. The main difference between model (11) and the pro-
posed convex relaxation (12) is that the latter model guarantees
a unique solution, while with the current optimization techniques
this is not possible for nonlinear non-convex models as (10).

4. Test systems

For validating the proposed convex approximation for selecting
the best candidate nodes for the optimal location of power sources
in a DC network, we use two distribution DC feeders, one with 21
and the other with 69 nodes.

4.1. The 21-node test feeder

Fig. 1 depicts the test system, which is an adaptation of the
21-node test system proposed in [8,31]. The voltage value at the
slack node is set to 1.0 p.u. All the parameters of this test system
can be found in [30,28].

IZI slack (v)

2
6 — 41 98
\ 3 [7
} 9
5 4
1

12 » 10 20
; %
17 ¢ 21
13 19
18 b 15

16

Fig. 1. Electrical configuration for the 21-node test system.

4.2. The 69-node test feeder

This test system is an adaptation of the classical AC 69-node test
system employed for power loss reduction via distributed genera-
tion integration in AC networks [12,14,39]. To transform this sys-
tem to a DC network, we use 12.66 kV and 100 kW as voltage
and power bases. In addition, the reactance component in all
branches as well as the reactive power consumption in all nodes
is neglected. Fig. 2 presents the configuration of the 69-node test
feeder. Its parameters can be found in [12].

5. Computational implementation and results

The solution of the non-convex nonlinear model (10) and the
proposed convex approximation (12) has been carried out by the
general algebraic modeling system (GAMS) in conjunction with
the CONOPT solver. The simulations were carried out in a desk
computer with an INTEL(R) Core(TM) i5 — 3550 processor at 3.50
GHz, 8 GB RAM, running a 64-bit Windows 7 Professional operat-
ing system.

For both test feeders, the possibility of locating three generators
is evaluated. For the 21-node test feeder, generators with maxi-
mum capabilities of 1.5 p.u. are considered, while for the 69-
node test feeder, this bound is extended to 12 p.u. Note that these
power bounds for the DGs in both test systems were selected based
on the simulation test developed in [30,28] for the 21-node test
feeder, and in [12,39] for the 69-node test feeder.

5.1. The 21-node test feeder

For simulation purposes, in this test system the percentage of
penetration of the power sources is fixed at 60% of the total power
consumption.

Fig. 3 shows the nodes where the relaxation of the binary vari-
able is activated, which implies that these nodes are the best can-
didates for the optimal location of power sources in the 21-node
test system. Note that in this graphical solution 12 nodes appear
as the most important nodes, which implies that for three possible
locations of distributed generators with 12 nodes there are 286
combinations out of the 1140 when all nodes are considered as
candidates (20 nodes without counting the slack node)', which
constitutes an 80.70% reduction in the size of the solution space.

From Fig. 3 it is possible to observe that the exact MINLP model
as well as the proposed convex relaxation identifies the same sub-
set of nodes with the best performance for the optimal location of
power sources, which implies that these models are equivalent.

! These values are calculated by using the formula for combinations without
repetitions
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Fig. 2. Electrical configuration for the 69-node test system.
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Fig. 3. Relaxed solution of the convex model for x for the 21-node test feeder.

Table 1
Behavior of the power losses in the 21-node test feeder.

Method Initial power losses [p.u.] Final power losses [kKW]
Model 2 0.27603411 0.02085889
Model 3 0.27603411 (4) 0.02086787 (7)
Error [%] 0 0.04305

Those results are confirmed in Table 1, where the exact model and
the convex proposed model attain the same value of the objective
function when no power sources are installed. In addition, the min-
imal error, 0.04%, shows that after solving these models consider-
ing the relaxation of the binary variables, both models achieve
quite similar solutions in terms of the objective function.

Note that for improving the solution of the proposed convex
model (see Model 3), we employed the sequential quadratic pro-
gramming approach recently proposed in [30]. This approach
allows improving the estimation of the Taylor linearization by
updating the initial point 7, at each iteration. For this reason, the
numbers four and seven appear in Table 1 in parentheses. These
values indicate the number of iterations required by the sequential
quadratic programming approach for solving the convex proposed
model in each case when considering a convergence error lower
than 1 x 107'°, These results were obtained via MATLAB in con-
junction with the quadprog toolbox.

5.2. The 69-node test feeder

In this test system we assume that the percentage of distributed
generation penetration is fixed at 40% of the total power
consumption.

Fig. 4 depicts the most important subset of nodes that are can-
didates for the optimal location of the power sources in the 69-
node test feeder. Note that these nodes are concentrated per area,
i.e., the nodes between 21 to 27 excluding nodes 23 and 25 (which
are located at the end of the main feeder as can be seen in Fig. 2), as
well as the nodes from 61 to 69 except node 63. Note that in this
solution (see Fig. 4) there are 13 important nodes that combine
three possibilities of allocating the power sources, which generates
286 combinations, while the original solution space has 50,116
options, which implies that the proposed relaxed models allow a
reduction of 99.43% in the size of the solution space. It is impor-
tant to mention that the MINLP as well as the proposed convex
approximation yield the same subset of best candidate nodes for
the optimal location of power sources, which is confirmed in the
results presented in Table 2, which shows that both models are
equivalent in terms of numerical performance by exhibiting results
with errors lower than 0.04% in each case.

Note that just as happened in the 21-node test feeder, for the
69-node test feeder the sequential quadratic programming model
uses seven iterations for solving the power flow model and four
iterations for solving the relaxed proposed model.

5.3. Additional results

Note that the relaxed solution of the convex model for the
21- and 61-node test feeders shows that the maximum power loss
reductions are 92.44% and 89.91%, respectively, which clearly are
higher values taking into account the fact that for the 21-node test
feeder the maximum penetration of power sources allowed is 60%
of the total demand, while for the 69-node test feeder, this
penetration does not exceed 40%.

Besides, for demonstrating that the solution space reduction
proposed in this paper corresponds to the best possible selection
of candidate nodes for the optimal location of power sources, we
evaluated all 286 possibilities for both test feeders, which
produced the results provided in Table 3.

From Table 3 it is possible to observe that the optimal solution
(discrete solution) of the 21-node test feeder correspond to the
higher bars plotted in Fig. 3. In addition, the same behavior is evi-
denced for the 69-node test feeder, with bars associated to nodes
21, 61 and 64. In terms of the reduction of power losses, note that
the discrete solutions attain 88.31% and 89.78% for the 21- and
69-node test feeders, respectively, which are pretty close to the
relaxed solutions reported previously in this subsection. Finally,
these solutions confirm that the proposed method for selecting
the best candidate nodes for the optimal location of power sources

Table 2
Behavior of the power losses in the 69-node test feeder.

Method Initial power losses [p.u.] Final power losses [kKW]
Model 2 1.53847553 0.15523231
Model 3 1.53847556 (4) 0.15528870 (7)
Error [%] 1.9500 x 1076 0.0363

0.8 |
0.6
=04t

02F
0.0 Al ==

e M

1 T 1 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
21222324 252627 28293031 323334353637 383940414243 44454647 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

Node

Fig. 4. Relaxed solution of the convex model for x for the 69-node test feeder.
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Table 3

Location and sizes of power sources for both test feeders.
Test feeder Node Size [p.u] Node Size [p.u] Node Size [p.u] Losses [p.u]
21-node system 9 0.8350 12 1.0258 16 1.4632 0.0306
69-node system 21 1.4140 61 10.2627 64 3.8803 0.1573

in a DC grid has an excellent numerical performance for addressing
the problem under analysis in this research, in terms of the quality
of the final candidate nodes for possible allocation of power sources.

5.4. Comparison with combinatorial methods

To demonstrate that the proposed method effectively reaches
the best possible solution when the reduced solution space is eval-
uated, in this section we present a comparison with a classical
metaheuristic approach based on a genetic algorithm (GA) in con-
junction with three optimal power flow (OPF) methods also based
on metaheuristics. These methods are particle swarm optimization
(PSO), reported in [41], black hole optimization (BHO) [40], and a
continuous genetic algorithm (CGA) [29]. Note that the GA is a
Chu & Beasley approach that is entrusted with the problem of opti-
mal location, while the OPF methods allow solving the dimension-
ing problem.

To make a fair comparison between these metaheuristics, we
employed 100 consecutive evaluations in order to determine the
standard deviation g, the mean value g, the minimum value min
of the power loss, as well as the average time t,,. that each method
takes to solve the problem. In addition, the GA is parametrized
with ten individuals in the population and 100 generational cycles,
while the OPF methods work with ten individuals in the population
and 200 iterations.

Table 4 shows the solution provided by each metaheuristic (i.e.,
GA-BHO, GA-CGA and GA-PSO) and contrasted with the proposed
approach when all individuals in the reduced solution space are
evaluated.

From the results in Table 4 we can affirm the following facts:

e The proposed convex approximation is faster than all the com-
parative methods presented. For the 21-node test feeder, if we
add all the times in the column 6, then the proposed approach
takes 4.23% of the computational time, while the GA-BHO takes
52.75% being the worst method in terms of processing time. In
the case of the 69-node test feeder, our approach uses 1.81% of
the processing time, while the GA-BHO approach consumes
53.49% of the computational time.

The standard deviation in both test systems evidences values
lower than 1 x 107!, which implies that for each consecutive
evaluation the proposed approach reaches the same solution.
This means that there is one and only one solution for the
relaxed OPF model, due to its convexity.

For both test feeders it is possible to observe that the optimal
location of the distributed generators is identified by at least
three methods: GA-CGA, GA-PSO and the proposed approach
(see column 2 in Table 4. Nonetheless, each one of them evi-
dences different minima (column 5), which implies that only
the proposed approach permits attaining the global optimum
for both simulation cases, namely, 0.0306 p.u. for the 21-node
test feeder and 0.1573 p.u. for the 69-node test feeder, as previ-
ously reported in Table 3.

e The average values of the solution presented in column 4 of
Table 4 confirm that when metaheuristic approaches are used
for optimizing continuous problems, then multiple explorations
are required, since such methods do not guarantee reaching a
global solution. In addition, the combinatorial approaches can
show high dispersion in the final solutions, as confirmed by
the standard deviation in column 3.

6. Conclusion and future work

A convex approximation for the optimal power flow problem
was addressed in this paper to provide an optimal subset of the
best candidate nodes for the optimal location of power sources in
a DC network. For doing so, a linearization method based on the
Taylor series expansion was used for decomposing the product of
the voltage variables. This decomposition can transform the bal-
ance power flow equations from a nonlinear non-convex set of
constraints into a set of affine hyperplanes, which permits obtain-
ing a convex optimal power flow approximation. Sequential quad-
ratic programming was also used for reducing the estimation error
between power losses and voltage values in comparison to the
solution of the exact non-convex OPF model. Furthermore, the
relaxation of the binary variables associated to the optimal location
of the power sources for obtaining a continuous convex formula-
tion allowed identifying the most important nodes in terms of
power injection. This relaxation permitted reducing the solution
space by more than 80% for both studied DC test feeders.

This method could be combined with combinatorial optimiza-
tion techniques for exploring the reduced solution space in order
to reach the global optimal solution of the problem. In this context,
the metaheuristic optimization technique could be used as a mas-
ter search algorithm entrusted with defining the locations of the
power sources, while the proposed convex optimal power flow
problem can be used for determining their optimal sizes.

Table 4

Comparison with combinatorial methods.
Method Nodes o [p.u] wp.u] min [p.u.] tave [S]
21-node test system
GA-BHO {9,12,16} 22761 x 107 0.0368 0.0318 111.9440
GA-CGA {9,12,16} 1.3537 x 10~ 0.0329 0.0311 33.1974
GA-PSO {9,12,16} 1.8437 x 1073 0.0319 0.0306 58.0934
Proposed {9,12,16} 1.0257 x 10~16 0.0306 0.0306 8.9688
69-node test system
GA-BHO {23,61 67} 2.5207 x 107 0.1633 0.1593 713.7193
GA-CGA {21,61,64} 3.4801 x 10~% 0.1648 0.1603 218.0169
GA-PSO {21,61,64} 5.4023 x 107% 0.1689 0.1588 378.4731
Proposed {21,61,64} 1.0520 x 10716 0.1573 0.1573 24.1868
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