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Abstract: The polypropylene (PP) synthesis process is crucial in the plastics industry, requiring
precise control as it directly impacts the catalytic activity and the final product’s performance. This
study investigates the effects of trace amounts of four different mercaptans on the polymerization
of propylene using a fourth-generation Ziegler–Natta (ZN) catalyst. Various concentrations of
these mercaptans were tested, and results showed that their presence significantly reduced the
melt flow index (MFI) of the final PP. The most notable MFI decrease occurred at 37.17 ppm of
propyl mercaptan and 52.60 ppm of butyl mercaptan. Methyl and ethyl mercaptan also reduced
the MFI at lower concentrations, indicating that mercaptans act as inhibitors by slowing down the
polymerization process and reducing the fluidity of molten PP. The highest MFI increase was observed
at lower concentrations of each mercaptan, suggesting that smaller molecular inhibitors require less
concentration. This trend was also seen in the catalyst’s productivity, where lower concentrations
of methyl mercaptan reduced PP production more effectively than higher concentrations of butyl
mercaptan. Fourier transform infrared spectroscopy (FTIR) identified interactions between the
mercaptans and the ZN catalyst. Computational analysis further supported these findings, providing
insights into the molecular interactions and suggesting possible inhibition mechanisms that could
impact the final properties of polypropylene.

Keywords: mercaptans; polypropylene; catalytic productivity; Ziegler–Natta catalyst; inhibitors;
trace level impurities; polymerization

1. Introduction

The fourth-generation Ziegler–Natta catalyst plays a fundamental role in the industrial
manufacture of polyolefins, especially iso-tactic polyethylene and polypropylene, being
recognized as one of the most prominent catalysts in this process [1–4]. In 1953, Karl Ziegler
made a crucial discovery when he observed that certain transition metal compounds, such
as titanium, vanadium, and zirconium, combined with aluminum alkyls, could catalyze the
polymerization of alkenes. This discovery was significant and promising, given that this
process could be carried out at temperatures and pressures lower than those required in
radical polymerization [5,6]. The following year, Giulio Natta used a similar catalyst system
to synthesize polymers with a stereoregular structure. This catalyst system was named
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the Ziegler–Natta catalyst. This discovery inaugurated the era of the mass production of
polymers with stereoregular structures [7].

A typical Ziegler–Natta catalyst system comprises four essential components: TiCl4
acting as a catalyst precursor, MgCl2 as support, electron donors (Lewis bases), and alkyl
aluminum as a catalyst activator. The primary function of the Ziegler–Natta catalyst lies
in activating and controlling the olefin polymerization reaction. The transition metal
compound acts as the active center of the catalyst, initiating the polymerization reaction
and allowing the incorporation of the monomers. Meanwhile, the cocatalyst stabilizes the
catalytic system and regulates the reaction rate [8,9].

Ziegler–Natta polymerization catalysts based on titanium (TiCl4/MgCl2) show high
sensitivity to certain organic compounds that act as inhibitors. Some contaminants af-
fect polymerization catalysts differently, depending on their degree of deactivation. For
example, in the production of polypropylene (PP), the most harmful contaminants for cat-
alytic deactivation include carbonyl sulfide (COS), carbon monoxide (CO), hydrogen sulfide
(H2S), acetylene (C2H2), oxygen (O2) and arsine/phosphine. In linear low-density polyethy-
lene (LLDPE) processes, the most concerning contaminants in the ethylene monomer feed
stream are CO, O2, H2S, acetylene, and CO2 [10–14].

This research focuses on four types of organic compounds: methyl mercaptan, ethyl
mercaptan, propyl mercaptan, and butyl mercaptan, which contain sulfur in their structure.
They act as inhibitors of the Ziegler–Natta catalyst in the production of polypropylene. This
study is not intended to carry out a detailed computational study. Therefore, molecular
simulations based on density functional theory (DFT) studies were implemented in a com-
plementary manner to explore the interactions between the molecules of these inhibitors
and TiCl4, focusing on its influence on the catalytic activity, the melt flow rate, the molec-
ular weight (Mw), and the production per metric ton of PP. This helped to complement
and corroborate the results obtained with the experimental tests. Although numerous
computational studies have focused on aspects such as the formation of the first active
site of Ti, chain growth, the scaffold, its interaction with electron donors, and the interac-
tions between different classes of molecule inhibitors and the active Ti center, no specific
experimental and computational investigations have been carried out on these proposed
compounds. This lack of prior research makes this study particularly innovative.

2. Materials and Methods
2.1. Standards and Reagents

Four types of mercaptans were used (methyl mercaptan, ethyl mercaptan, propyl
mercaptan, and butyl mercaptan) provided by Merk in Darmstadt, Germany, and with a
purity of 99.98%. For PP production, polymer-grade propylene (Shazand Petrochemical,
Arak, Iran) was used, along with a fourth-generation Ziegler–Natta catalyst with MgCl2
support and, as an internal donor, diisobutyl phthalate (DIBP) supplied by Sud Chemie,
Munich, Germany; The activator used was triethyl aluminum (TEA) of 99.97% purity from
Merk, Darmstadt, Germany, diluted in n-heptane provided by Tosoh Finechem Corporation,
Shiba, Tokyo. Additionally, tri-n-heptane and acetone were used. Another reagent was
cyclohexylmethyldimethoxysilane (CMDMS) from Merk, Germany, used as an external
donor, along with hydrogen and nitrogen.

2.2. Polymerization

Figure 1 corresponds to the PP polymerization scheme. Capital letters are assigned
to each line of the process. Propylene (A), nitrogen (B), hydrogen (C), and mercaptan
(D) are involved in the process. Gases generated during the reaction (E) come from the
catalyst before (F) and inside (G) the reactor. Non-propylene that remains unreacted (H) is
recycled in the process. The degassing stage of the PP resin (I) involves gases entrained (J)
by nitrogen and water vapor, leading to the final resulting PP (K), as detailed in Table 1.
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Figure 1. Production process diagram for polypropylene (PP).

Table 1. Amount of methyl mercaptan, ethyl mercaptan, propyl mercaptan, and butyl mercaptan in-
troduced during the polymerization process. Measurement of Mw, MFI, % Zigler–Natta productivity,
and % lost production in the catalytic system (Average table).

Methyl Mercaptan (PPM) 0.00 0.78 1.71 2.78 5.83 12.51 17.76 25.65

TM of PP Produced 46.00 45.75 45.52 44.87 43.54 41.22 38.64 36.78
Productivity Ziegler–Natta (TM/Kg) 46.00 45.75 45.52 44.87 43.54 41.22 38.64 36.78

% Productivity Loss 0.00 0.54 1.04 2.46 5.34 10.40 16.00 20.04
MFI 2.00 2.00 2.00 2.00 1.97 1.93 1.90 1.85

% MFI loss 0 0 0 0 1.50 3.50 5.0 7.50

Ethyl Mercaptan (PPM) 0.00 0.87 1.94 4.14 7.12 13.18 29.22 37.17

TM of PP Produced 46.00 45.79 45.52 44.91 43.51 41.36 38.62 36.50
Productivity Ziegler–Natta (TM/Kg) 46.00 45.79 45.52 44.91 43.51 41.36 38.62 36.50

% Productivity Loss 0.00 0.46 1.04 2.36 5.41 10.08 16.05 20.66
MFI 2.00 2.00 2.00 2.00 1.98 1.98 1.89 1.84

% MFI loss 0 0 0 0 1 1 5.65 8.15

Propyl Mercaptan (PPM) 0.00 1.23 2.14 4.89 9.16 14.14 28.71 44.24

TM of PP Produced 46.00 45.75 45.40 44.83 43.59 41.29 38.89 36.73
Productivity Ziegler–Natta (TM/Kg) 46.00 45.75 45.40 44.83 43.59 41.29 38.89 36.73

% Productivity Loss 0.00 0.54 1.30 2.55 5.23 10.24 15.46 20.16

MFI 2.00 2.00 2.00 2.00 1.97 1.93 1.89 1.85
% MFI loss 0 0 0 0 1.50 3.50 5.50 7.50

Butyl Mercaptan (PPM) 0.00 1.48 2.29 5.75 10.22 20.33 30.50 52.61

TM of PP Produced 46.00 45.76 45.48 45.08 43.68 41.55 39.08 36.75
Productivity Ziegler–Natta (TM/Kg) 46.00 45.76 45.48 45.08 43.68 41.55 39.08 36.75

% Productivity Loss 0.00 0.51 1.13 2.00 5.04 9.67 15.05 20.12
MFI 2.00 2.00 2.00 2.00 1.98 1.94 1.89 1.84

% MFI loss 0 0 0 1 1 3 6.67 8.16
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Once the polymerization was completed, acetone was added to stop the process, and
subsequently, the suspension was transferred to a receiving flask maintained under a
nitrogen (N2) atmosphere. The synthesized powder was washed thrice with 200 mL of
heptane and then dried under vacuum at room temperature. The resulting polymer was
stored under darkness, nitrogen, and controlled temperature conditions. Crucially, all steps
of the procedure were meticulously carried out in a nitrogen atmosphere to avoid exposure
to air.

The standard polymerization conditions were as follows: polymerization tempera-
ture of 72 ◦C, catalyst amount of 5.1 kg/h, triethylaluminium activator (TEAL), activator
concentration of 0.26 kg/h, 30.1 g/h of H2 and 1.3 TM/ h of propylene at a pressure of
28 bar.

To ensure mercaptan concentrations in the propylene line, an Agilent Technologies
7890B GC-MS was used. The PP resin samples were analyzed using the Agilent 7694E
headspace sampler, with a cycle time of 60 min and an oven set to 150 ◦C, according to
Hernández’s method [15].

2.3. Melt Flow Index (MFI) and Average Molecular Weight (Mw)

The melt flow index (MFI) was determined using a Tinius Olsen MP1200 plastome,
Horsham, PA, USA. The apparatus’s cylinder was at an operating temperature of 232 ◦C,
and a 2.3 kg piston was used to displace the molten material. With the MFI data ob-
tained, the Bremner method was applied to evaluate the average molecular weight of each
polypropylene (PP) sample.

2.4. Infrared (IR) Spectroscopy

Infrared (IR) spectroscopic studies were conducted using a Nicolet iN10MX spectro-
scope from Thermo Fisher Scientific (Thermo Scientific, Waltham, MA, USA) equipped with
an iN10Z unit. Attenuated total reflection (ATR) mode was used. Spectra were recorded
with a resolution of 4 cm−1, spanning a range from 400 to 4000 cm−1, allowing sensitive
and accurate identification of various absorption bands.

2.5. Molecular Electrostatic Potentials

For this research, optimized geometry calculations for the various proposed inhibitors
were carried out using Gaussian 16 Rev.A03 software with the B3LYP basis set, which
has been recognized for its effectiveness in determining molecular structures. Electron
densities and electrostatic potentials were then calculated using the 6-311G(d,p) basis set.
The proposed molecules were surrounded by a three-dimensional surface that revealed the
contour of constant electron density. On this surface, molecular electrostatic potentials were
calculated and plotted. These potentials can be visualized with different levels of detail,
but our current qualitative goal is to identify the sites most susceptible to nucleophilic,
electrophilic, or free radical attacks.

2.6. Fukui Function

UKA FOKUI 2.00 software was used to obtain the quantitative values of the chemical
descriptors and the local reactivity properties. These calculations offer detailed information
on the local characteristics and reactivity of the inhibitors, the active site of the ZN catalyst,
and its support, providing a deeper understanding of its behavior and chemical properties.

Theoretical Complement of the Fukui Function
Assessment of the Global and Local Reactivity Descriptors Methyl Mercaptan, Ethyl

Mer-captan, Propyl Mercaptan and Butyl Mercaptan
The most effective method for studying the local selectivity of an inhibitor is through

the condensed Fukui function. This function provides insight into how the electron densi-
ty within the system changes. Mathematically, Fukui functions are derived from partial
derivatives that relate the electron density to the number of electrons at a particular loca-
tion within the molecule. These derivatives enable the quantification of that location’s
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ability to donate or accept electrons through nucleophilicity indices f + (r), electrophilicity
f − (r), and radical f 0 (r), where qN + 1, qN − 1, and qN are the electronic population of
atom k in anionic, cationic, and neutral systems, respectively [16].

fk+ = qN + 1 − qN

fk− = qN − qN − 1

3. Results

During the chain propagation step in polypropylene (PP) synthesis, the transfer of
propylene to Ti-PP occurs, where the olefin is incorporated into the PP-alkyl chain. This
phase is sensitive to contaminants that act as inhibitors of various polarities and interact
with the active Ti center, being influenced by different factors. In the case of the proposed
mercaptans, a preference for coordination with the Ti center on the active Ti-MgCl2 surface
is observed. This dynamic shows how the thiol group present in the mercaptans competes
with the cocatalyst (TEAL) to bind to the Ti active site of –TiCl3, affecting the bonding of
the olefin in the formation of propylene complexes and their insertion, therefore inhibiting
the catalytic activity of the ZN system [17].

Initially, the sulfur in the structure coordinates the mercaptans with the Ti of the
TiCl4/MgCl2 complex due to the predominance of the two free electron pairs of sulfur over
those of propylene, which interact with Ti. The S-Ti interaction prevails over the formation
of Ti-propylene complexes since the latter presents fewer barriers and a lower energy gain.
To mitigate these interactions, it is essential to eliminate the impurities present in the system
and resume the polymerization process.

Points I, J, and K were analyzed when detecting mercaptans at a trace level in the
degassing process of the PP resins, as shown in Figure 1. This analysis gave important
quantitative results, which were used to support the study on the inhibitory capacity of the
samples of the different mercaptans reflected in Table 1.

The efficiency of the Ziegler–Natta catalyst is considerably affected by to the presence
of inhibitors, which are adsorbed on the active surface of the TiCl4 crystalline network
of the catalyst, favoring the loss of productivity. This interaction brings with it a lack of
productivity due to an interference in the ability of the co-catalyst (TEAL) to compete for
the active sites of the catalyst since it is occupied by the inhibitor that partially deactivates
the catalyst, decreasing its catalytic activity, as reported in previous research by Hernandez-
Fernandez [18,19].

3.1. Analysis of the Impact of Different Mercaptans on the Reduction of Metric Tons of
Polypropylene (PP) Produced Depending on the Concentration at Various Sampling Points

The loss of productivity of the Ziegler–Natta catalytic system during the manufacture
of PP or copolymers is directly related to the intervention of interactions that generate
impurities with the Ti active center, generating a loss in the production of the desired
polymer [20,21].

The impact of various mercaptans on the reduction of catalytic activity was analyzed
by considering multiple types of specific samples. The graphs in Figure 2 provide a detailed
representation of how this decrease in production efficiency per metric ton of PP manifests
as a function of the concentration of the inhibitors in each type of sample (PPn). In the
first sample of PP0 (Graph a), PP8 (Graph b), PP16 (Graph c), and PP24 (Graph d) without
any mercaptan (Figure 2), a catalyst productivity of 46 MT/kg was obtained in each graph.
This indicates that the Ziegler–Natta catalyst worked well without adding mercaptan and
achieved high polypropylene production. In sample PP1, where approximately 0.78 ppm of
methyl mercaptan was added (Figure 2a), there was a production of 45.75 MT/kg, showing
a production loss of 0.25 MT/kg; on the other hand, the ethyl mercaptan in sample PP8
with a concentration of 0.87 ppm (Figure 2b) had a production of PP of 45.79 TM/kg,
and with this a production loss of 0.21 TM/kg was seen with a ppm concentration of
ethyl mercaptan 0.09 times greater than the supplied concentration of methyl mercaptan.
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However, the production loss of ethyl mercaptan was lower than the production loss of
methyl mercaptan. To confirm this trend, we analyzed the graph of another proposed
mercaptan and compared it with graph (a). For this, propyl mercaptan was used (Figure 2c)
because the concentration in ppm (1.23 TM/kg of propyl mercaptan) is 0.36 times greater
than ethyl mercaptan and 0.45 times greater than the concentration supplied. Of methyl
mercaptan, however, it can be seen that the production loss of propyl mercaptan was
equal to the production loss of methyl mercaptan; despite the difference in concentration
mentioned above, this same trend continues in the graph of butyl mercaptan (Figure 2d).
This shows that methyl mercaptan acts as an inhibitor with a lower ppm concentration
than the rest of the proposed mercaptans.
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Figure 2. There is a loss of productivity per metric ton depending on the inhibitor (ppm), Methyl Mer-
captan (a), Ethyl Mercaptan (b), Propyl Mercaptan (c), Butyl Mercaptan (d), and the type of sample.

This is due to the difference in the molecular size of methyl mercaptan concerning the
other inhibitors; by coordinating the sulfur with the titanium (S-Ti) on the active surface of
the catalyst, the size of the chain allows the mercaptan to adsorb and couple correctly. This
is a better way to achieve more effective inhibition. When analyzing all the graphs together,
we see that, in each PP sample, when the molecular size of the inhibitory species increased,
a higher concentration of butyl mercaptan, propyl mercaptan, and ethyl mercaptan was
needed (just in this order, from highest to lowest concentration) to assimilate or equalize
the production loss per metric ton of methyl mercaptan.
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The evaluation of the change in the average molecular weight (Mw) of the samples
studied using the Bramner equation shows that in (Figure 3a–d), an increase in Mw was
noted as the ppm concentration of the samples increased. In four different inhibitors, it can
be seen that the value of Mw was 56,950 kDalton in the first four concentrations of each
mercaptan; from this point on, the value of Mw increased constantly until reaching a value
close to 57,700 kDalton.
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This phenomenon indicates that these four types of mercaptans: methyl mercaptan,
ethyl mercaptan, propyl mercaptan, and butyl mercaptan, exert a substantial impact on the
properties of the material by forming stable complexes during the polymerization reaction.
This influences the structure of the material, the polymer chain, and, therefore, its final
properties, such as its average molecular mass (Mw).

3.2. Impact and Effects on Flow Index (MFI) and Mw of PP

In the analysis of the graphs of the different mercaptans regarding the MFI variable
(Figure 4), it can be seen that the highest MFI was for a concentration of 0 ppm of the
inhibitors; on the contrary, when the inhibitors reached their highest concentrations of
(25.65 ppm) for methyl mercaptan, (37.17 ppm) for ethyl mercaptan, (44.24 ppm) for propyl
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mercaptan and (52.60 ppm) for butyl mercaptan, there was a decrease in the MFI for all
samples, where it can be seen that the MFI value remained constant at 2.0 g/10 min in
the first four concentrations of the different mercaptans. From this, we know how the
MFI value decreases depending on the ppm concentration. In particular, it can be seen in
graph (b), which corresponds to ethyl mercaptan, how after lowering the MFI value, it
remains constant in two different concentrations, this being the value of 1.89 g/10 min;
this reveals the effect of inhibitors on properties such as the melt index of the polymer. In
addition, we can estimate the processing of the melt since the higher the MFI values, the
greater the fluidity of the melt, and the lower the MFI values, the lower the fluidity of the
polymer melt [22,23]. The MFI measurements in each copolymer sample were carried out
in triplicate for each concentration of the mercaptans present.
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The Bramner equation shows the relationship between the MFI and the average
molecular weight (Mw). In Figure 5a–d, an inversely proportional relationship is observed
between the MFI and the Mw. Samples with an MFI of 2.0 g/10 min appeared with a
Mw that was around 56,950 kDalton. The MFI between 1.97 and 1.93 g/10 min showed a
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Mw between 57,500 and 57,340 kDaltons. The samples of the copolymers with the highest
MFI values ranged between 25.7 and 27.1 g/10 min, with a Mw that ranged between
35,304 and 34,854 kDaltons. It is important to highlight that an increase in molecular weight
can negatively affect the processability of the polymer. Polymers with high molecular
weight often exhibit higher viscosities, which complicates their handling during processes
such as extrusion or injection molding. In applications that require greater flexibility or
ease of processing, excessive molecular weight could be counterproductive.
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3.3. Molecular Electrostatic Potential

The molecular electrostatic potential (MEP) map is a crucial tool for studying molecular
structure and global reactivity, providing a detailed representation of a molecule’s charge
distribution and electron availability. This method uses colors to outline the different
regions of the molecule based on their electron density [24,25]. In the MEP, red areas
indicate a higher electron density, suggesting the presence of nucleophilic sites in the
molecule, that is, regions with a high probability of donating electrons. In contrast, the blue
areas represent an electron deficiency, signaling the presence of electrophilic sites, where
the molecule has a greater affinity for accepting electrons.

These characteristics are essential to understanding the chemical reactivity of the
molecule since they allow us to predict how it will interact with other chemical species. By
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identifying the nucleophilic and electrophilic sites in the MEP, it is possible to determine
which areas of the molecule are most likely to participate in chemical reactions and how
they may interact with other substances.

Figure 6 shows a three-dimensional representation of the electrostatic effect, covering
a range of values that goes from −3.907 × 10−2 to 3.907 × 10−2 for methyl mercaptan,
−2.854 × 10−2 up to 2.854 × 10−2 for ethyl mercaptan, −2.867 × 10−2 to 2.867 × 10−2 for
propyl mercaptan and −2.885 × 10−2 and 2.885 × 10−2 for butyl mercaptan.
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According to Figure 6, for these four types of mercaptans, the blue, green, and red
colors represent the regions with the most positive electrostatic potential, zero potential,
and the most negative electrostatic potential, respectively. The red and yellow regions
are mainly found on the sulfur atom, indicating that it is the most reactive site for an
electrophilic attack. On the other hand, the blue regions around the hydrogen atoms are
the most reactive sites for a nucleophilic attack.

This MEP information is relevant to the ZN catalyst inhibition approach because
it suggests that the proposed mercaptans can act as inhibitors by interacting with the
active sites on the catalyst. The central region of the Ziegler–Natta catalyst stands out for
its blue tone, located on the titanium atom. The blue tone shown in Figure 7 suggests
a more significant electron deficiency in that area and, therefore, a greater tendency to
accept electrons.

This information provided by the MEP indicates that the proposed mercaptans could
act as inhibitors of the ZN catalyst. This is caused by the interactions with the catalyst in
its electrophilic regions. Thus, they can form a stable complex and consequently negate
the interactions. The catalyst may have the desired reagent (be it AlEt3 or the same PP),
preventing the catalytic process from being carried out correctly [15,16,26–50].
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3.4. Analysis of Methyl Mercaptan, Ethyl Mercaptan, Propyl Mercaptan, and Butyl Mercaptan as
Inhibitors of the ZN Catalyst

This study focuses on studying the trends of mercaptans as inhibitors of the ZN catalyst
using density functional theory (DFT) at the B3LYP/6-311G(d,p) level. The Fukui index
was used to investigate local reactivity to predict the most likely sites where nucleophilic
and electrophilic attacks may occur. The repercussions that a compound with the ability
to inhibit and thus reduce catalytic activity can have are often due to how the inhibitor
molecule binds to the surface of the metal. This interaction can occur in two ways: physical
(physisorption) or chemical (chemisorption); this depends directly on the strength of this
connection. For chemisorption, one of the reactive molecules acts as an electron pair donor;
on the other hand, a different molecule acts as an electron pair acceptor [30–32].

Fukui Features

To understand the Fukui function, one must know that it is divided into two parts:
there is the nucleophilic Fukui function, ƒr+, which indicates the areas with a greater
probability of suffering a nucleophilic attack by electron-rich species, and in contrast to
this there is the electrophilic Fukui function, ƒr−, which shows the areas where there is a
greater probability of an electrophilic attack by a species lacking electrons. In this way, the
Fukui function helps in understanding and identifying the sites most likely to react in a
molecule. The dual descriptor ∆fr is used, understood as the difference between ƒr+ and
ƒr−. If ∆f has a positive character, it indicates a greater probability of being attacked by a
nucleophilic species in those areas; in contrast to this, if ∆fr is obtained with a negative
character, this indicates a greater probability of being attacked by an electrophilic species.
To have a greater understanding of the reactive nature of the molecule, calculations and
tables were carried out for the quantitative interpretation of the Fukui functions (ƒ0, ƒ+

and ƒ−) for each site of the molecule. The information it provides helps to interpret the
qualitative reactivity and, with this, the selectivity of specific sites within the molecule.
Tables 2–5 show values associated with the Fukui functions of each type of mercaptan,
thereby identifying which areas of the molecule are most likely to react and how this can
happen—a reaction with different chemical species [33,34].
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Table 2. Local descriptors for Methyl Mercaptan.

# f− f + f 0 ∆f

1 0.9095 0.0435 0.4765 −0.866
2 0.0272 0.6773 0.3523 0.6501
3 0.0314 0.0676 0.0495 0.0362
4 0.0314 0.0675 0.0495 0.0361
5 0 0.0739 0.037 0.0739
6 0.0005 0.0701 0.0353 0.0696

Table 3. Local descriptors for Ethyl Mercaptan.

# f− f + f 0 ∆f

1 0.8866 0.0466 0.4666 −0.84
2 0.0201 0.2927 0.1564 0.2726
3 0.0045 0.3019 0.1532 0.2974
4 0.0352 0.074 0.0546 0.0388
5 0.0352 0.074 0.0546 0.0388
6 0.0092 0.0303 0.0198 0.0211
7 0.0092 0.0303 0.0198 0.0211
8 0 0.0506 0.0253 0.0506
9 0 0.0995 0.0497 0.0995

Table 4. Local descriptors for Propyl Mercaptan.

# f− f + f 0 ∆f

1 0.8271 0.0277 0.4274 −0.7994
2 0.0397 0.0337 0.0367 −0.006
3 0.0654 0.3692 0.2173 0.3038
4 0.0288 0.3444 0.1866 0.3156
5 0.0046 0.0145 0.0095 0.0099
6 0.001 0.0385 0.0197 0.0375
7 0.0012 0.037 0.0191 0.0358
8 0.0278 0.0334 0.0306 0.0056
9 0.0011 0.0132 0.0071 0.0121
10 0.0024 0.0296 0.016 0.0272
11 0.0006 0.0242 0.0124 0.0236
12 0.0004 0.0346 0.0175 0.0342

Table 5. Local descriptors for Butyl Mercaptan.

# f− f + f 0 ∆f

1 0.7416 0.0483 0.395 −0.6933
2 0.0491 0.0423 0.0457 −0.0068
3 0.0361 0.1348 0.0855 0.0987
4 0.0143 0.3328 0.1735 0.3185
5 0.0018 0.0999 0.0508 0.0981
6 0.0302 0.0171 0.0237 −0.0131
7 0.0313 0.014 0.0226 −0.0173
8 0.0154 0.0209 0.0182 0.0055
9 0.0111 0.0238 0.0174 0.0127
10 0.0344 0.0665 0.0504 0.0321
11 0.0348 0.0669 0.0509 0.0321
12 0 0.0117 0.0058 0.0117
13 0.0001 0.0121 0.0061 0.012
14 0 0.0109 0.0055 0.0109
15 −0.0001 0.0982 0.049 0.0983
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Calculations of the Fukui function for each mercaptan have allowed the identification
of the sites most likely to undergo nucleophilic attack by the mercaptans (see Tables 1–5).
Higher f− values are obtained at atom number 1, representing sulfur (see Figure 8), with
values ranging from f− (0.9095–0.7416), also highlighting its susceptibility to electrophilic
attacks. In contrast, for methyl mercaptan, the 2C carbon atom is more prone to nucleophilic
attacks with an f + value (0.6773) compared to other atoms. For ethyl mercaptan, the trend
of the carbon atom prevails with an f + value (0.2927), and the 3C carbon atom shows a more
notable susceptibility with an f + value (0.3019). On the other hand, for propyl mercaptan
and butyl mercaptan, the 2C carbon atom changes its trend, drastically decreasing the
probability of a nucleophilic attack; however, the electrophilic trend increases significantly
with an f + value (0.3692) for the 3C carbon atom, and additionally, the 4C carbon atom
increases with an f + value (0.3444). For butyl mercaptan, the 3C carbon atom decreases
drastically for f + (0.1348) and slightly for the 4C carbon atom f + (0.3328).
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A greater reactivity and probability of electrophilic attacks are interpreted in the case
of sulfur atoms (represented by the number 1S). Likewise, the quantitative values show
that sulfur is the atom most prone to radioactive attacks. This can be evidenced since they
present ∆f (−0.866) for methyl mercaptan, ∆f (−0.84) for ethyl mercaptan, ∆f (−0.7994) for
propyl mercaptan, and ∆f (−0.6933) for butyl mercaptan.

The results in Table 6 reveal that the chlorine atoms in the two, three, and four positions
of TiCl4 are particularly susceptible to electrophilic attacks. In contrast, the titanium atom
at position one is the primary site for a nucleophilic attack.
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Table 6. Fukui functions for TiCl4.

# f− f + f 0 ∆f

1 0.0001 0.7968 0.3986 0.7968
2 0.3741 0.0506 0.2125 −0.3234
3 0.163 0.0503 0.1073 −0.1137
4 0.373 0.0513 0.2125 −0.3229
5 0.0878 0.0509 0.0693 −0.0368

Furthermore, it was observed that both the titanium in position one and the chlorine
atoms in positions two, three, and four are the most vulnerable to free radical attacks (see
Figure 9).
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Regarding the support spatial conformation of the Ziegler–Natta catalyst (a) and its
active site (b). e (Table 7), it has been identified that the atoms in positions two and nine
are particularly susceptible to nucleophilic attacks. These atoms are of particular interest
since, according to previous research, alcohols react with magnesium cations in these
positions. To support these findings, data have been compiled in Table 7, which presents
the specific values of f−, f +, f 0, ∆f for each of the atoms on the catalyst’s surface. These
values provide a solid basis for understanding the tendency of the atoms above to be
affected by nucleophilic attacks.

Table 7. Fukui functions for ZN support.

# f− f + f 0 ∆f

1 0.0313 0.0304 0.0309 −0.0009
2 0.0013 0.4433 0.2223 0.442
3 0.5554 0.0032 0.2793 −0.5522
4 0.0109 0.0029 0.0069 −0.008
5 0.0011 0.0351 0.0181 0.034
6 0.0004 0.0198 0.0101 0.0194
7 0.0003 0.0036 0.0019 0.0033
8 0.0007 0.0287 0.0147 0.028
9 0.0007 0.3607 0.1807 0.36
10 0.0005 0.0236 0.0120 0.0231
11 0.0003 0.0123 0.0063 0.012
12 0.0000 0.0037 0.0019 0.0037
13 0.0068 0.0017 0.0043 −0.0051
14 0.3523 0.0027 0.1775 −0.3496
15 0.0194 0.0248 0.0221 0.0054
16 0.0064 0.0014 0.0039 −0.005
17 0.0060 0.0006 0.0033 −0.0054
18 0.0060 0.0014 0.0037 −0.0046
19 0.0002 0.0001 0.0002 −0.0001
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3.5. Experimental Analysis by FTIR of the Reaction Product of ZN With Each Mercaptan
of Interest

Analyzing the Fourier transform infrared (FTIR) spectra of the ZN catalyst samples
after their reactions with each of the four mercaptans under study in this experiment
offers a detailed view of their interactions with the active center of titanium. FTIR spectra
reveal significant changes in the mercaptans’ structure and chemical bonds when they
come into contact with the catalyst, providing a deeper understanding of the catalysis
processes and the surface dynamics in Ziegler–Natta systems. Figure 7 shows five spectra
identified as ZN–methyl mercaptan, ZN–ethyl mercaptan, ZN–propyl mercaptan, ZN-butyl
mercaptan, and ZN. The Ti–Cl bond is detected in the region from 618 to 555 cm−1 for the
ZN complex [37]. This indicates the formation of complexes or the adsorption of species
on the catalytic surface, where the Ti–Cl bond is identified in the range of 603 to 617 cm−1,
showing a closeness in the region of this bond.

In each spectrum, a peak can also be seen at 1510 cm−1, which is characteristic of
the Cl–Mg bond typical of the catalyst support. Peaks are observed between 1474 cm−1

and 1510 cm−1, corresponding to the stretching vibration of the C–H bonds, particularly
associated with the -CH2 group. Between 2972 and 2990 cm−1, peaks typical of -CH3 are
identified. These alkyl groups are present in the aliphatic chain of the four mercaptans
investigated in this work. In the ZN spectra with each mercaptan, peaks are observed
between 450 and 480 cm−1, which, compared with the literature, are characteristic of the
vibration of the Ti–S bond. A shift of the peak to the left can also be observed for the Ti–Cl
bond at 493 cm−1.

Figure 10 shows the possible torsion–rotation for a robust parallel band centered at
644 cm−1 and a weaker band centered at 727 cm−1 for the C–S bond in the Ti–S–C junction
in the ZN–methyl mercaptan complex. Such bands in similar regions were also identified
when FTIR analyzed pure methyl mercaptan [38,39].

Table 8 shows the frequencies identified in Figure 10 for the titanium–sulfur (Ti-S),
titanium–chlorine (Ti–Cl), chlorine–magnesium (Cl–Mg), sulfur–carbon (S–CH3 and S–CH2)
and carbon–hydrogen (CH3 and CH2) for the complexes ZN–methyl mercaptan, ZN–ethyl
mercaptan, ZN–propyl mercaptan and ZN–butyl mercaptan. In the spectra corresponding
to the mercaptans, specifically ZN–methyl mercaptan, ZN–ethyl mercaptan, ZN–propyl
mercaptan, and ZN–butyl mercaptan, a peak of crucial importance was identified that
confirms the reactions indicated in Table 9, corresponding to the Cl–Ti–S–CH2 bond and
the Cl–Ti–S–CH3 bond in the literature. The values reported for this type of vibration
correspond to 644 and 728 cm−1.

Table 8. Frequencies (cm−1) of characteristic bonds present in ZN–Mercaptans.

Bonds ZN-Propyl ZN-Methyl
Mercaptan

ZN-Ethyl
Mercaptan

ZN-Propyl
Mercaptan

ZN-Butyl
Mercaptan

Ti-S -------- 430 445 475 477
Ti-Cl 618–555 493 725 591 599

Cl-Mg 1510 1456 1510 1625 1634
Cl-Ti-S-CH2 -------- -------- 644–720 647–725 642–728
Cl-Ti -S-CH3 -------- 644–722 -------- -------- --------

-CH3 2995–2969 3058 3054 2997 3115–2986
-CH2 1517–1480 -------- 1518–1444 1511–1449 1513–1467

Table 9. Symbolic representation of the reactions of the process.

Reagents Products

TiCl4 + CH3S → CH3STiCl4
TiCl4 + CH3CH2S → CH3CH2S TiCl4

TiCl4 + CH3CH2CH2S → CH3CH2CH2STiCl4
TiCl4 + CH3CH2CH2CH2S → CH3CH2CH2CH2STiCl4
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tan, and ZN-butyl mercaptan.

4. Discussion

This study of the presence of mercaptans in the Ziegler–Natta (ZN) catalyst was
carried out to determine and evaluate the percentage of production loss measured in
metric tons per kilogram of solvent (TM/kg) and, in addition, to analyze the effects of
these compounds on the properties and final characteristics of polypropylene (PP). To
measure the efficiency of the four proposed mercaptans, a comparison was made with a
study previously carried out by Hernández Fernández on an evaluation of the reactivity of
methanol and hydrogen sulfide waste with the catalyst [35]. Mercaptans are the direct focus
in the inhibitory interaction of methanol since mercaptans are sulfur analogs of alcohols [36].
For this, it is necessary to delve into the mercaptans’ possible interactions with the ZN
catalyst’s active site during the synthesis of PP to determine its inhibitory tendency. It can
be seen in the results presented in Table 1 that the most potent inhibitory capacity belongs
to methyl mercaptan since it produces a productivity loss of 0.54% with a concentration
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of only 0.78 ppm compared to butyl mercaptan, which has with the lowest inhibitory
capacity among the four mercaptans with a loss of 0.51% but requiring a concentration of
1.48 ppm. When comparing these results with the methanol present in the study carried
out by Hernández, the methanol does not manage to match the values of the productivity
loss of the mercaptans, being a value of methanol 0.35% with a concentration of 4.3 ppm,
evidencing a much higher concentration but with a lower productivity loss value. The
computational study was carried out to support the experimental research following
specific guidelines, such as the analysis of the chemical nature of the inhibitors. Previous
research has identified other inhibitors that affect ZN productivity [15,16,40–50].

The UKA FOKUI 2.00 software was used to obtain the quantitative values of the
mercaptans to determine the local reactivity properties (see Tables 2–5), where the numerical
values of the sulfur atoms found are shown. In position one (see Figure 8), it is observed
that the ∆fr for the sulfur atoms are ∆f (−0.866) for methyl mercaptan, ∆f (−0.84) for
ethyl mercaptan, ∆f (−0.7994) for propyl mercaptan, ∆f (−0.6933) for butyl mercaptan,
showing a nature susceptible to electrophilic attacks. Hernandez’s research shows the
oxygen atom present in position five (see Figure 10) in the methanol molecule also presents
this same tendency but with a lower ∆fr (see Table 5), this being ∆f (−0.280), evidencing
a low susceptibility to electrophilic attacks compared to mercaptans. In the electrostatic
potential (MEP) map, the values varied from −3.907 × 10−2 to 3.907 × 10−2 for methyl
mercaptan, from −2.854 × 10−2 to 2.854 × 10−2 for ethyl mercaptan, from −2.867 × 10−2

to 2.867 × 10−2 for propyl mercaptan, and from −2.885 × 10−2 to 2.885 × 10−2 for butyl
mercaptan, the sites most prone to electrophilic attack being those around the atom of
sulfur. Similarly, the methanol molecule exhibits an electrostatic potential range varying
from −6.288 × 10−2 to 6.288 × 10−2 eV. This shows that mercaptans exhibit a superior
inhibitory effect at a quantitative and qualitative level. This research could lead to more
in-depth studies on the inhibitory capacity of mercaptans in the polymerization process at
an industrial level, which is a novel and unexplored area.

5. Conclusions

This research demonstrates that trace-level concentrations of four different mercap-
tans negatively affect the production of polypropylene (PP) and the catalytic activity of
the Ziegler–Natta (ZN) catalyst. Increasing mercaptan concentrations inversely impacted
the ZN catalyst’s productivity, with methyl mercaptan being the most potent inhibitor,
reducing productivity with the smallest concentration. The study also identified an inverse
relationship between the polymer’s melt index and molecular weight (Mw), while higher
mercaptan concentrations correlated directly with increased Mw. These findings indicate
that mercaptans significantly alter the polymer structure, potentially affecting its perfor-
mance during manufacturing and in subsequent applications, primarily due to their strong
tendency to donate electrons to the titanium active center of the ZN catalyst, thus acting as
inhibitors in the polymerization process.
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