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Abstract: The development of new methods of identification of active pharmaceutical ingredients 
(API) is a subject of paramount importance for research centers, the pharmaceutical industry, and 
law enforcement agencies. Here, a system for identifying and classifying pharmaceutical tablets 
containing acetaminophen (AAP) by brand has been developed. In total, 15 tablets of 11 brands for 
a total of 165 samples were analyzed. Mid-infrared vibrational spectroscopy with multivariate 
analysis was employed. Quantum cascade lasers (QCLs) were used as mid-infrared sources. IR 
spectra in the spectral range 980–1600 cm−1 were recorded. Five different classification methods 
were used. First, a spectral search through correlation indices. Second, machine learning algorithms 
such as principal component analysis (PCA), support vector classification (SVC), decision tree 
classifier (DTC), and artificial neural network (ANN) were employed to classify tablets by brands. 
SNV and first derivative were used as preprocessing to improve the spectral information. Precision, 
recall, specificity, F1-score, and accuracy were used as criteria to evaluate the best SVC, DEE, and 
ANN classification models obtained. The IR spectra of the tablets show characteristic vibrational 
signals of AAP and other APIs present. Spectral classification by spectral search and PCA showed 
limitations in differentiating between brands, particularly for tablets containing AAP as the only 
API. Machine learning models, specifically SVC, achieved high accuracy in classifying AAP tablets 
according to their brand, even for brands containing only AAP. 

Keywords: vibrational spectroscopy; machine learning; counterfeit drugs; chemometrics;  
mid-infrared 
 

1. Introduction 
The detection of chemical substances in different solid, liquid, or gaseous matrices 

has always been of interest to research groups. These substances of interest may be active 
pharmaceutical ingredients (APIs) in pharmaceutical formulations that, if misused, could 
harm people. Recently, the United States Food and Drug Administration (US FDA) and 
the World Health Organization (WHO) have raised the alarm about the increase in 
counterfeit drugs in the world that are being distributed in the market as legal drugs, with 
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over-the-counter drugs being the most susceptible to this drug trafficking. These 
counterfeit drugs may contain no active ingredient, be in poor condition, or be 
contaminated. However, these drugs may have the right active ingredient but the wrong 
dosage. Whatever the case, these counterfeit drugs are illegal and can be harmful to your 
health [1,2]. 

In 2017, the WHO estimated that 10.5% of medications worldwide are either subpar 
or fake. As per a report, the incidence of counterfeit medicines was around 13.6% in low- 
and middle-income countries (LMICs) [3]. Asia, specifically India, leads in the production 
of counterfeit medicines, with approximately 35–75% of fake medicines being produced 
in India. However, as per the reports of the Pharmaceutical Security Institute (PSI), a not-
for-profit membership organization, the maximum percentage of counterfeit drugs seized 
was higher in North America, followed by Asia–Pacific [2,4]. Developing nations are 
home to a sizable part of the counterfeit drugs being circulated in the world. As per the 
data from WHO, every 1 in 10 medicinal products in developing countries is counterfeit 
or spurious [5]. 

Counterfeiting is not limited to vaccines alone. Counterfeited versions of essential 
items needed during the COVID-19 pandemic, such as face masks, PPE kits, N95 masks, 
gloves, sanitizers, and diagnostic kits, along with medicines such as antivirals, 
chloroquine, paracetamol, and vitamin C, were also abundant in the market [6]. The illegal 
market for drugs increased by more than 400% at the end of 2021 [7]. 

Acetaminophen (AAP), or paracetamol, is one of the most widely used active 
ingredients in pharmaceutical formulations. AAP is commonly used as an analgesic and 
antipyretic to relieve pain and reduce fever. It is specifically prescribed to treat various 
conditions such as headaches, muscle aches, arthritis, back pain, toothaches, colds, and 
fevers. During COVID-19, the volume of requests for paracetamol increased by more than 
110%. Thus, the indication of its use as an anti-inflammatory drug, the lack of a 
prescription, and the ease in procuring it led, in some cases, to lethal consequences. AAP 
overdose remains the leading cause of death or transplantation due to acute liver failure 
in many parts of the world. The amount supplied to the patient is of utmost importance; 
an insufficient amount could prolong the treatment of a given condition and, even worse, 
too much could have adverse consequences for the patient’s health. Due to its easy 
availability without prescription, deliberate consumption or overdosage can happen. 
Overdoses of AAP are associated with liver toxicity and renal failure. Liver toxicity begins 
with AAP plasma levels in the range of 120 µgmL−1 4 h after ingestion, and severe damage 
occurs with plasma levels up to 200 µgmL−1 4 h after ingestion [8,9]. 

Many analytical methods have been used and proposed by the scientific community 
for the determination of AAP, both for pharmaceutical formulations and biological 
samples. Among them, chromatographic [10,11] and optical (UV-VIS) [12,13] methods are 
the most widely used. Other analytical methods, such as electrochemical [14,15], have 
been recently reported by the scientific community. These techniques are efficient in terms 
of reproducibility and low detection limits. However, in their chemical analysis process, 
sample preparation steps are carried out, lengthening the analysis time and making their 
use in the field difficult. 

Vibrational spectroscopic techniques such as Raman spectroscopy and infrared 
spectroscopy have been frequently used for the analysis of active ingredients in 
pharmaceutical products [16,17]. Within the infrared, near-infrared spectroscopy has been 
widely used in pharmaceutical applications [18,19], especially for the determination of 
AAP in solid and liquid pharmaceutical formulations [20]. 

Some contributions that have made use of vibrational spectroscopy for the analysis 
of AAP are R. Szostak et al. [21] who proposed the determination of acetylsalicylic acid 
and acetaminophen in pharmaceuticals by partial least squares (PLS) and principal 
component regression (PCR) treatment of Fourier transform (FT)–Raman spectroscopic 
data. The proposed method was tested on powdered samples. The relative standard error 
of predictions (RSEPs) was calculated for both calibration and prediction datasets. These 



Molecules 2024, 29, 3562 3 of 17 
 

 

values ranged from 0.7% to 2.0% for the calibration set and from 0.8% to 2.3% for the 
prediction set across the different PLS models. 

M. Khanmohammadi et al. [22] carried out a spectroscopy method based on Fourier 
transform near-infrared (FT-NIR) spectroscopy and chemometric techniques to classify 
paracetamol preparations according to polymorphic changes. These studies were carried 
out on standard samples and paracetamol preparations (acetaminophen tablets). M. 
Mallah et al. [23] developed a method for the quantification of paracetamol in solid 
formulations using transmission FTIR spectroscopy with KBr pellets. The spectral region 
of 1800–1000 cm−1 was utilized for the quantification of paracetamol content, achieving a 
regression coefficient (R2) of 0.999. The limits of detection and quantification using FTIR 
spectroscopy were 0.005 mg g−1 and 0.018 mg g−1, respectively. O. O. Oloyede. et al. [24] 
highlighted a screening methodology through the combination of spectroscopic 
(Raman/FTIR) and X-ray diffraction techniques with PCA as a predictive screening tool 
to investigate and verify latent chemical information of pharmaceutical solid drugs. The 
developed FTIR/Raman–PCA models present no evidence of drug falsification in 12 
paracetamol brands but correlate similar brands based on characteristic vibrational and 
absorption modes of the API (AAP form I). 

As technology advances, instruments can generate a large amount of information 
with multivariate data in a short time. This has led to advanced analysis tools being used 
to extract as much information as possible. Here, machine learning (ML) has played an 
important role when traditional chemometrics methods such as PCA yield unsatisfactory 
results. 

ML is a subfield of artificial intelligence (AI) focused on programing computers to 
learn and improve automatically without explicit instructions. It leverages algorithms that 
analyze data and use the insights to make predictions and solve problems. ML solves 
problems in chemistry through the analysis of large datasets generated by analytical 
instruments and experiments. Models are built to understand the relationships between 
various chemical variables and to predict important properties or behaviors. Complexity 
is reduced by extracting relevant information from noisy or overwhelming data, and 
experimental design is improved while making data analysis more efficient [25,26]. 

ML is useful when the objective is to classify chemicals according to their brand, thus 
verifying whether a given product belongs to the manufacturer shown on the label. Some 
published studies are T. Chao et al. [27] who applied near-infrared (NIR) spectroscopy for 
the identification of six different brands of detergent powder. Both extreme learning 
machine (ELM) and its ensemble (EELM) were used for constructing predictive models. 
A total of 180 samples belonging to six different brands were prepared for the experiment. 
The model from the EELM algorithm achieved 100% accuracy on both the training and 
test sets, which was superior to the model from the ELM algorithm. 

Z. Hongguang et al. [28] applied near-infrared (NIR) spectroscopy for the rapid 
classification of five different brands of washing powder. Chemometric calibrations, 
including partial least square discriminant analysis (PLS-DA), back propagation neural 
network (BP-NN), and least square support vector machine (LS-SVM), were investigated. 
Principal components (PCs) were extracted as inputs of BP-NN and LS-SVM models. As 
for the comparison of the three investigated models, both the BP-NN model and the LS-
SVM model successfully classified all samples in the validation set according to their 
brands. However, the PLS-DA model failed to achieve 100% of classification accuracy. 

When IR spectroscopy is used on poorly reflecting or very thick samples, there is 
inherently a significant loss of light if the source is not tightly focused, as in the case of a 
Globar, requiring a more complex array of optical components. In addition, the light 
source must be modulated by an interferometer to enable Fourier transform infrared 
spectroscopy (FTIR), which reduces the light output. The practical importance of 
brightness should not be overlooked in optical metrology, especially in spectroscopic 
measurements. The brightness of a light source directly affects the spectral power incident 
on the sample unit area. For mid-IR spectroscopy, this means that, according to the Beer–
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Lambert–Bouguer law, the light–matter interaction path lengths can be extended, 
preventing total light attenuation and allowing more molecules to be studied. However, 
these complications are circumvented with an MIR laser [29–31]. 

Quantum cascade laser (QCL) spectroscopy is a technique that uses quantum cascade 
lasers as a light source for infrared spectroscopy. Quantum cascade lasers are 
semiconductor lasers that emit in the mid- to far-infrared region of the electromagnetic 
spectrum. Unlike conventional lasers, which are based on electron-hole recombination, 
QCLs use intersubband transitions within the conduction band of a semiconductor 
material [32]. 

IR spectroscopy using traditional sources can have limited sensitivity for low-
concentration impurities and APIs. This is due to the limited penetration depth in thick or 
highly scattering tablets. In contrast, quantum cascade laser spectroscopy can penetrate 
deeper into the sample, allowing analysis of API distribution and potential 
inhomogeneities within the tablet. QCL spectroscopy can offer higher sensitivity, 
allowing the detection and quantification of trace amounts of substances. This advantage 
is particularly beneficial when dealing with complex pharmaceutical formulations where 
overlapping spectra can be problematic [33]. 

The use of QCL spectroscopy firstly provides enhanced sensitivity and specificity 
through high intensity and narrow linewidth emission, resulting in laser source 
brightness several orders of magnitude higher than thermal emitters. This high specificity 
is essential for distinguishing between similar compounds and accurately identifying 
molecular species. Second, it provides wavelength tunability for selective and targeted 
analysis. Third, it gives an improved signal-to-noise ratio due to the QCL’s coherent, high-
intensity output and rapid scanning capabilities for real-time monitoring. The mid-
infrared spectra can be acquired up to 1000 times faster with the same detected light 
intensity, the same detector noise level, and without loss of SNR using the tunable 
quantum cascade laser compared to the FTIR approach using synchrotron or 
supercontinuum light. Finally, it presents a compact, robust, and efficient design suitable 
for portable and field applications [30,34]. 

This research will propose new methodological strategies that, when applied, would 
contribute to solving problems associated with the identification and classification of 
chemicals present in different matrices. Having an analytical method based on infrared 
spectroscopy for the detection of active pharmaceutical ingredients (in our case AAP) 
combined with ML is of interest to the pharmaceutical industry and law enforcement 
agencies. It allows easy and fast molecular information to be obtained to determine 
whether an API is present in a certain pharmaceutical product and whether it belongs to 
a brand declared on the label. Using the proposed method will make it possible to know 
whether the drug is present as a desired product or whether it is a counterfeit drug. 

2. Results and Discussion 
2.1. Infrared Spectra Analysis of AAP 

Figure 1 shows the spectra of AAP. The spectra were taken using a back reflection 
geometry employing a LaserScan spectrophotometer. Figure 1A shows the IR spectra of 
tablets containing AAP as the sole API; additionally, it shows the spectra of standard 
(pure) AAP using QCL (black spectrum) and ATR-FTIR (red spectrum, in transmittance 
mode). The ATR-FTIR spectrum was used as a reference spectrum to validate the spectra 
from QCL. In Figure 1A, it can be observed that the spectra obtained with ATR-FTIR 
exhibit the characteristic IR vibrational bands of AAP when compared with the FTIR 
spectra from the literature [23,35–37]. Among the most important IR vibrational bands 
observed in Figure 1A are those for acetaminophen that appear as follows: 1562 cm−1 
assigned to amide II (N-H in plane deformation), 1520 cm−1 for aryl C-H, C-H symmetric 
bends, 1454 cm−1 assigned to skeletal aryl C-C stretch, 1370 cm−1 for -CH3 (acetamino), 1330 
cm−1 aligned al CC (phenyl ring), 1260 cm−1 and 1210 cm−1 related to C-O (phenol), 1170 
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cm−1 associated with C-H (phenyl ring), and 1035 cm−1 and 1010 cm−1 linked to C-H 
aromatic. 

 

 
Figure 1. IR spectra of acetaminophen (AAP) using QCL spectroscopy; the vertical dashed lines 
represent the locations of the main bands. (A) Spectra of AAP in different brands containing AAP 
as the only API. (B) Spectra of AAP in different brands containing AAP and other APIs. 

In the solid formulation of acetaminophen, substances other than APIs are used for 
various purposes and are called excipients. The excipients commonly used for 
formulation are lactose, magnesium stearate, starch, and microcrystalline cellulose. These 
are added in different proportions and vary from product to product. Figure 1B shows 
mid-infrared spectra of pharmaceutical tablets from different laboratories in the spectral 
range 990–1600 cm−1. These tablets are solid mixtures containing various APIs (as shown 
in Table 1) and excipients. However, it is noticeable that, for the most part, the IR 
vibrational spectra depicted in Figure 1A,B are very similar to the IR spectra of standard 
APIs shown in Figure 1A; therefore, characteristic signals of acetaminophen can be 
observed in the spectra illustrated in Figure 1A,B. 
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Visual analysis of the spectra in Figure 1B allows the identification of IR bands in 
addition to those shown in Figure 1A. These bands belong to the additional APIs found 
in the solid tablet. Some IR signals of other APIs present are ibuprofen and caffeine (1420 
cm−1, 1380 cm−1, 1360 cm−1, 1180 cm−1, and 1090 cm−1) from Lafrancol [38–40], codeine (1264 
cm−1, 1250 cm−1, and 1457 cm−1) from Sanofi [41], tramadol (1080 cm−1 and 1180 cm−1) in 
Grunenthal [42], and guaifenesin and phenylephrine (1058 cm−1, 1069 cm−1, 1132 cm−1, 1380 
cm−1, and 1460 cm−1) from Tylenol [43]. Additionally, there appears to be no significant 
interference caused by the excipient. This establishes that the method is practical without 
carrying out more laborious sample preparation processes such as extraction, thus 
allowing direct identification of the brand. 

Table 1. Composition of tablet of AAP according to its commercial brand. 

Country APIs Present Brand 
Colombia Acetaminophen 500 mg AG 
Colombia Acetaminophen 500 mg Best 
Colombia Acetaminophen 500 mg Genfar 

Puerto Rico Acetaminophen 500 mg GSK 
Colombia Acetaminophen 500 mg La Sante 

Mexico Acetaminophen 650 mg Perrigo 
Colombia Acetaminophen 500 mg MK 
Colombia Acetaminophen 325 mg Grunenthal 

 Tramadol 37.5 mg  

Colombia Acetaminophen 250 mg La Francol 
 Ibuprofen 400 mg  
 Caffeine 65 mg  

Colombia Acetaminophen 500 mg Sanofis 
 Codeine phosphate 30 mg  

Puerto Rico Acetaminofén 325 mg Tylenol 
 Guaifenesin 200 mg  
 Phenylephrine HCl 5 mg  

2.2. Spectral Identification 
A useful tool widely used by the analyst for identifying an unknown sample is the 

use of spectral search. This consists of comparing a spectrum of an unknown sample 
against a reference spectrum from a database (library). To perform this comparison, each 
data point in the unknown spectrum is compared to each corresponding point in the 
reference spectrum. For the spectral search, first, the IR spectrum of the unknown sample 
is obtained. Next, the obtained spectrum is then compared to spectra in a spectral 
database. Finally, spectral searching algorithms analyze the fit between an unknown 
spectrum and the library spectra (by Peak Matching and Peak Intensity). A spectral library 
(database) is, in essence, a collection of reference spectra for a variety of known materials. 

Different mathematical formulas (search algorithms) can be used to compare two 
spectra point by point. Some of the most common similarity-based search algorithms 
include Euclidean distance and Pearson correlation coefficient [44]. The spectral 
correlation coefficient (SCC) is useful for tasks such as compound identification, assessing 
the quality of spectral data, and comparing experimental results with reference spectra by 
providing a quantitative measure of the similarity or dissimilarity between spectra. It 
ranges from -1 to 1, where a value of 1 indicates perfect correlation, meaning that the 
spectra are identical or very similar. A value of −1 indicates perfect anti-correlation, 
meaning that the spectra are mirror images of each other, and a value close to 0 indicates 
little or no correlation between the spectra. The SCC generates a numerical metric (hit 
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quality value—HQV) that indicates how well an unknown material’s spectrum matches a 
reference spectrum in the spectral library [45]. 

Table 2 displays the HQV values obtained when comparing the spectrum of a tablet 
containing AAP from different brands with those from the spectral library using the 
Pearson correlation coefficient algorithm (r) as shown in Equation (1). The spectral library 
is a collection of different infrared vibrational spectra of AAP tablets of different brands 
described in Table 1 using QCL spectroscopy. It also contains the spectrum of pure AAP. 𝑟 = ห∑൫𝐴௜ − 𝐴൯൫𝐵௜ − 𝐵൯หට∑൫𝐴௜ − 𝐴൯ଶ ට∑൫𝐵௜ − 𝐵൯ଶ (1)

where A indicates the library (reference) spectrum and B indicates a test spectrum of the 
samples, i denotes the intensity of the ith data point (wavenumber), and 𝐴  and 𝐵 
designate the average intensity of the A and B spectra, respectively. To evaluate an 
unknown spectrum based on its HQV, the following considerations must be taken into 
account. A high HQV (above 0.9) suggests a good match between the unknown and 
reference spectra. It is a strong indication that the unknown material is likely the same or 
very similar to the reference material. A medium HQV (around 0.7–0.9) indicates a good 
possibility that the unknown material matches the reference, but further confirmation 
might be needed. Finally, with a low HQV (below 0.7), the match between the unknown 
and reference spectra is weak [45]. 

Table 2. HQV values for AAP spectra of different brands using the Pearson correlation coefficient 
algorithm. 

Tylenol Sanofi Lafrancol Grunenthal MK Perrigo Lasante GSK Genfar Best AG 
Spectral 
Library 

0.89 0.91 0.50 0.66 0.89 0.96 0.98 0.93 0.96 0.97 0.93 Lasante 
0.90 0.93 0.59 0.79 0.96 0.95 0.97 0.93 0.92 0.97 0.98 Best 
0.87 0.90 0.47 0.57 0.85 0.95 0.96 0.95 0.94 0.92 0.89 Genfar 
0.82 0.91 0.67 0.84 0.99 0.89 0.93 0.91 0.89 0.98 0.99 AG 
0.89 0.91 0.56 0.73 0.90 0.94 0.91 0.93 0.90 0.93 0.91 Sanofi 
0.45 0.56 0.99 0.71 0.70 0.46 0.50 0.53 0.47 0.59 0.67 Lafrancol 
0.81 0.90 0.70 0.89 0.99 0.87 0.89 0.89 0.85 0.96 0.99 MK 
0.63 0.73 0.71 0.99 0.89 0.66 0.66 0.71 0.57 0.79 0.84 Grunenthal 
0.93 0.94 0.46 0.66 0.87 0.99 0.96 0.96 0.95 0.95 0.89 Perrigo 
0.87 0.93 0.53 0.71 0.89 0.96 0.93 0.99 0.95 0.93 0.91 GSK 
0.98 0.89 0.45 0.63 0.81 0.93 0.89 0.87 0.87 0.90 0.82 Tylenol 

The HQV values shown in Table 2 indicate that the ability to identify the AAP tablet 
according to its brand depends largely on the composition of the tablet. For brands 
containing more than one API, brand identification using the spectral library is possible; 
these have HQV close to 1 (greater than or equal to 0.98). Examples of these are the brands 
LaFrancol, Grunenthal, and Tylenol. Although the Sanofi brand has another API (Codeine 
phosphate), the concentration of this (30 mg) is perhaps much lower compared to that of 
AAP (500 mg). As a result, its HQV (around 0.9) is very similar to other brands containing 
only AAP, such as Lasante, Best, Genfar, AG, MK, Perrigo, and GSK. When tablets present 
only AAP with API, according to Table 1, the brand classification by spectral search is 
much more challenging. Based on an HQV greater than or equal to 0.95 (numbers in red) 
for spectral identification, Lasente has very similar HQVs to Best, Genfar, and Perrigo. 
Best is very similar to Lasente, AG, and MK. Genfar can be classified as Lasante, Perrigo, 
and MK. AG can be branded as Best and MK. MK can be identified as Best and AG. Finally, 
GSK will be classified as Genfar and Perrigo. 
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Considering the limited efficiency of spectral identification by the spectral library for 
the classification of AAPs according to their brands, it is necessary to explore advanced 
data analysis techniques such as ML. 

2.3. Machine Learning Analysis 
The initial dataset underwent preprocessing to enhance the outcomes. One 

preprocessing method employed was the first derivative, essential for accentuating 
specific peaks in the spectrum and achieving improved discrimination between various 
samples. Another preprocessing technique utilized was the standard normal variance 
(SNV), which facilitated the normalization of mean values and standardized variance to 
1. 

2.3.1. Principal Component Analysis 
PCA is a powerful technique used in data analysis, particularly for reducing the 

dimensionality of datasets while preserving crucial information. PCA analyzes the 
covariance matrix to identify eigenvectors and eigenvalues. Eigenvectors represent the 
directions of greatest variance in the data, and eigenvalues indicate the amount of 
variance explained by each eigenvector. The eigenvectors with the highest eigenvalues 
are chosen as the principal components (PCs). These PCs represent the new axes that 
capture the most significant information in the data. The original data points are then 
projected onto these new PCs, creating a lower-dimensional representation of the data. 

Figure 2 shows the score plot. The score plot is a crucial visual representation used 
in PCA. The score plot displays the data points from the original high-dimensional dataset 
projected onto the new, lower-dimensional space created by the PCs. Each data point is 
represented by a dot in the plot, and its co-ordinates correspond to its scores on the chosen 
PCs. Typically, the first two or three PCs are used for visualization, as they capture the 
most significant variance in the data [46]. Figure 2 shows that PCA explains 87.7% of the 
variance. In this diagram, samples containing AAP as the only API are represented by 
dots, while those with multiple APIs are denoted by crosses. The diagram prominently 
showcases the grouping of samples from MK, Grunenthal, Perrigo, Lafrancol, and Tylenol 
laboratories, while the remaining samples are not distinctly separated, rendering them 
indistinguishable from one another. Additionally, the tested samples can be classified in 
two ways: firstly, based on their concentration (250 mg, 325 mg, 500 mg, and 650 mg) and, 
secondly, based on the presence or absence of additional components different from 
acetaminophen (such as ibuprofen, codeine, tramadol, guaifenesin, and phenylephrine), 
as shown in Table 1. Upon analyzing the Score diagram, it becomes apparent that the PCA 
method primarily attempts to classify the samples based on concentration, resulting in the 
formation of two distinct groups. One group comprises samples with a concentration of 
500 mg, located in the grouping’s borders (AG, Best, Genfar, GSK, Lasante, MK, and 
Sanofis), which happens to be the most prevalent concentration among the samples, while 
the other group consists of samples with concentrations different than 500 mg located in 
the center of the grouping (Perrigo, Grunenthal, Lafrancol, and Tylenol). However, this 
form of classification fails to adequately distinguish the components of the GSK and MK 
laboratories, as their samples are placed near the group with concentrations different from 
500 mg. Moreover, samples with multiple APIs tend to be clustered by the PCA model 
with three PCs, as observed with the well-grouped brands Sanofi, Lafrancol, Grunenthal, 
and Tylenol. 
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Figure 2. Score plot with 3 principal components using IR spectra of AAP in different 
brands. The dots marked with a cross represent samples with more than one API, while 
the dots marked with a circle represent samples with just one API. 

Similar to the results obtained for spectral identification, distinguishing between 
samples from different laboratories, even when the samples only contain acetaminophen, 
is not achievable. 

2.3.2. Analysis of Machine Learning Using SVC, DTC, and ANN 
Considering the limited results when spectral search and PCA are used in the 

identification of AAP tablets by brands, more robust machine learning analyses were 
considered. Machine learning techniques such as SVC, DTC, and ANN were used to 
evaluate the capability of these unsupervised learning algorithms. This algorithm 
analyzes unlabeled data, identifying patterns and structures within the data themselves, 
to achieve high levels of accuracy in differentiating between tablets containing AAP as a 
single API from different brands. 

An important step in ML is the setting of hyperparameters. The performance of ML 
models is directly influenced by hyperparameters. Choosing the right hyperparameters 
can have a significant impact on the effectiveness, efficiency, and robustness of the models 
deployed. This setting is unique for each analysis you wish to perform and depends on 
the specific dataset and its characteristics, the type of machine learning algorithm used, 
and the desired performance metrics [26,47–49]. 

Table 3 presents the cross-validation results for each method, illustrating the 
examined values for every hyperparameter. Subsequent results will be obtained by 
configuring each method with the values specified in Table 3. This sequential approach 
ensures a thorough exploration of hyperparameter settings, thereby enhancing the 
understanding of the model’s performance. 

A useful tool for evaluating the effectiveness of classification models in ML is the 
confusion matrix (CM). A CM is a table used to evaluate the performance of a classification 
algorithm in machine learning. Each cell of the table shows the number of data points that 
belong to a specific combination of actual and predicted classes. The performance of a 
model can be visualized by comparing predicted classes with true classes. The confusion 
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matrix provides a summary of the number of correct and incorrect predictions made by 
the model from SVC, DTC, and ANN [25,47]. 

Table 3. Hyperparameter values resulting from cross-validation for each method. 

Values Hyperparameters Method 
1.023292 C SVC 

0 Γ  

Lineal Kernel  

7 Max_depth DTC 
5 Min_samples_split  

log_loss Criterion  

20 Neurons ANN 
1 Hidden layers  

lbfgs Solver  

In Figure 3, the confusion matrix is depicted, offering a straightforward and visual 
method to evaluate the performance for each class among SVC, DTC, and ANN methods. 
It is evident from this matrix that SVC showcases the most robust performance, with only 
1 error detected out of 50 test samples. ANN also presents promising results, with a mere 
two errors. However, the performance of DTC was comparatively less favorable, with 16 
errors identified. 

Using ML algorithms such as SVC and ANN, it is possible to differentiate between 
brands with AAP as the only API. These results overcome the limitations encountered 
when spectral search and PCA are used as tools to identify AAP tables by brands. Across 
all three ML algorithms, distinguishing between samples from BEST and Genfar 
laboratories proves to be somewhat challenging. However, when SVC and ANN are 
employed, these brands can be identified with high accuracy when compared to DTC. An 
error for ANN occurred between a sample with mere acetaminophen (AG) and another 
with additional components (Sanofis). Notably, Sanofis contains APP 500 mg and is the 
brand with the sample containing a lower concentration of additional API (30 mg of 
codeine phosphate). Probably Sanofi, having the same concentration of AAP as AG, 
presents spectral similarity as indicated by the HQV values in Table 2. In the case of DTC, 
most errors resulted from misclassifying samples containing only acetaminophen (9 out 
of 16 errors). Overall, all three methods effectively differentiate between samples with 
acetaminophen as a single API and those with additional components. This underscores 
the efficacy of machine learning methods for detecting pharmaceutical samples according 
to their manufacturer. 
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Figure 3. Confusion matrices for the test data in the classification of (A) SVC, (B) DTC, and (C) 
ANN. 

To evaluate the model’s performance, precision (Pr), recall (Rc), specificity (Es), F1-
score (Fs), and accuracy (Ac) metrics were employed. These metrics, commonly utilized 
for assessing classification problems, have been demonstrated in various studies [48–50]. 
They are defined in Equations (2)–(6), where true positive (TP) signifies instances where 
the model correctly identifies positive outcomes, while true negative (TN) denotes correct 
identification of negative outcomes. False positive (FP) indicates instances where the 
model erroneously identifies a negative outcome as positive, and false negative (FN) 
represents erroneous identification of a positive outcome as negative. Through a 
comprehensive analysis of these metrics within the confusion matrix, the model’s 
performance and predictive accuracy can be thoroughly evaluated. 𝑃𝑟 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (2)
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𝑅𝑐 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3)

𝐸𝑠 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 (4)

𝐹𝑠 = 2 ൈ 𝑃𝑟 ൈ 𝑅𝑐𝑃𝑟 + 𝑅𝑐  (5)

𝐴𝑐 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6)

The Pr assesses the accuracy of positive predictions, while Rc measures the model’s 
ability to capture all relevant instances. Es gauges the model’s ability to correctly identify 
negative instances. Fs is the harmonic mean of precision and offers a balanced assessment. 
The Ac is the ratio of correctly predicted instances to the total instances, providing an 
overall measure of the model’s correctness. 

In Figure 4, the averages of the main metrics used to evaluate the performance of the 
classification problem are illustrated. Remarkable accuracy has been achieved in 
classifying acetaminophen samples. Both support vector classification (SVC) and artificial 
neural network (ANN) methods have demonstrated high effectiveness, with precision, 
recall, and F1-score metrics generally either perfect or near perfection. Remarkably, the 
accuracy (Ac) for all three methods exceeds 94%, underscoring the robustness of the 
classification results (see Figure 4). Although decision tree classification (DTC) exhibits 
slightly lower performance compared to SVC and ANN, it still maintains a notable 
capability to classify samples accurately. These findings collectively suggest that machine 
learning models can effectively distinguish between acetaminophen samples, holding 
significant implications for ensuring product quality and authenticity within the 
pharmaceutical industry and of interest to law enforcement agencies. 

 
Figure 4. Average performance metrics for classification models’ predictive testing. 

3. Materials and Methods 
To create our sensor based on mid-infrared spectroscopic data and ML for direct 

detection and classification of acetaminophen tablets according to their brand, the 
following methodology was used. 

3.1. Sample and Standard Acquisition 
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The reagents used in this study correspond to standards and samples. Pure 
analytical-grade acetaminophen purchased from Sigma-Aldrich (Milwaukee, WI, USA) 
was used as a standard to obtain the reference mid-infrared vibrational spectrum of AAP. 
Solid tablet formulations containing AAP as API were used as samples. These samples 
were obtained from local drugstores in Cartagena–Colombia, Puerto Rico, and Mexico. 
The acquired samples containing AAP were from different manufacturing laboratories 
(brands) as shown in Table 1. In total, 15 tablets of AAP were purchased by brand, for a 
total of 165 samples in the 11 brands tested. These were purchased from different 
drugstores and dates to ensure different batch manufacturing dates. 

3.2. Sample Preparation 
No wet chemistry was used for sample preparation in this study. The only step 

involved was the pulverization of a small portion of the solid pharmaceutical samples in 
a mortar to reduce the particle size of the sample. If the tablet had a coating, it was 
removed before pulverizing. 

3.3. Acquisition of Spectra 
Spectroscopy based on quantum cascade lasers (QCL) was used to obtain the mid-

infrared (MIR) vibrational spectra of AAP. Infrared spectra of AAP from commercial 
tablets, as well as spectra taken from the solid AAP standard were recorded using the 
spectrometer LaserScanTM from Block Engineering (900–1600 cm−1, Marlborough, MA, 
USA), 4 mm × 2 mm beam, thermoelectrically cooled Hg-Cd-Te (MCT) detector. The 
system was designed to operate in back reflection mode (at zero angle concerning the 
surface normal, as shown in Figure 5B. 

 
Figure 5. Experimental setup: analyte detection using spectroscopy. (A) Sample preparation, (B) 
QCL detection, (C) spectral analysis, and (D) ML analysis. 

MIR spectra were recorded at a distance of 6 in. from pulverized sample at 4 cm−1 
resolution and 2 Co-add. The background spectra were obtained using flat and clean Al 
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substrates (31 mm × 31 mm). One spectrum was taken for each sample, for a total of 15 
spectra per brand. Thus, 165 independent spectra were obtained. All spectra were stored 
in Thermo-Galactic™ SPC format (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 

3.4. Machine Learning Analysis 
The spectra obtained were subjected to machine learning analysis such as principal 

component analysis (PCA), support vector classification (SVC), decision tree classifier 
(DTC), and artificial neural network (ANN) with several preprocessing steps. Both data 
processing and preprocessing stages leveraged the scikit-learn machine learning library 
for Python [51]. The library’s StandardScaler function was instrumental for SNV, 
implementing a mean centering algorithm during preprocessing. Consequently, the data 
were rescaled by subtracting the mean and dividing by the standard deviation [25]. 

Table 4 presents the chosen hyperparameters for the hyperparameter optimization 
of SVC, DTC, and ANN models. The selected hyperparameter values were determined 
based on commonly used settings in similar investigations [52,53]. The ultimate optimal 
values for each hyperparameter were determined through cross-validation, employing a 
grid search approach. 

Table 4. Hyperparameter values tested for cross-validation of ML models. 

 Hyperparameters Method 10௫, 𝑥 ∈ [0.01; …; 2] 
[0; 0.07; …; 1] × 102 

C SVC 
Γ  

[‘linear’; ‘Rbf’; ‘Sigmoid’] Kernel  

[3; 5; 7; 10] 
[2; 5; 10] 

Max_depth DTC 

 Min_samples_split  

[‘Gini’; ‘Entropy’; ‘Log_loss’] Criterion  

[5; 10; 20] Neurons ANN 
[1; 2; 3] Hidden layers  

[‘Lbfgs’; ‘Sgd’; ‘Adam’] Solver  

The entire dataset underwent a random splitting strategy, allocating 70% for training 
and reserving the remaining 30% for testing purposes. During the cross-validation 
process, the samples were further partitioned into 5 groups using the KFold method. In 
KFold cross-validation, the dataset is divided into ‘k’ folds or subsets, and the model is 
trained ‘k’ times, each time using a different fold as the testing set and the remaining folds 
as the training set. This iterative process ensures a comprehensive evaluation of the 
model’s performance across different subsets of the data, promoting robustness and 
reliability in the assessment. 

Figure 5 shows the experimental setup used in this research, summarizing the steps 
performed in this research: (Figure 5A) Step I, sample selection and preparation; (Figure 
5B) Step II, QCL detection; (Figure 5C) Step III, vibrational spectra; and (Figure 5D) Step 
IV, classification by ML. 

4. Conclusions 
This study successfully developed a method for identifying and classifying 

acetaminophen tablets according to their brand using QCL-based mid-infrared 
spectroscopy and machine learning. The proposed methodology offers a promising 
solution for quality control and brand authentication in the pharmaceutical industry and 
law enforcement agencies for counterfeit detection. Spectral identification using a spectral 
library showed limitations in differentiating between brands, particularly for tablets 
containing AAP as the single API. PCA analysis was able to partially group samples based 
on concentration but struggled to distinguish between brands of AAP tablets containing 
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only AAP. Machine learning models, specifically SVC and ANN, achieved high accuracy 
in classifying AAP tablets according to their brand, even for brands containing mere AAP. 
Confusion matrix analysis revealed that SVC had the most robust performance with only 
one error, followed by ANN with two errors. DTC exhibited lower accuracy with 16 errors 
but it effectively differentiated between samples with and without additional APIs. This 
research demonstrates the effectiveness of ML models in combination with mid-infrared 
spectroscopy for brand identification of AAP tablets. Using this approach to distinguish 
between brands offers significant advantages for quality control, brand authentication, 
and potentially law enforcement applications. Further research could explore the 
extension of this methodology to other pharmaceutical products and brands, as well as 
the integration of additional analytical techniques to enhance classification accuracy. 
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