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ABSTRACT
Accurate detection of clouds and shadows present in opti-
cal imagery is important in remote sensing for ensuring data
quality and reliability. This study introduces a deep learn-
ing model capable of generating precise cloud and shadows
masks for subsequent filtering. Unlike other works in litera-
ture, this model operates efficiently across diverse temporali-
ties, sensors, and spatial resolutions, without the need for any
relative or absolute transformation of the original data. This
versatility, to date unreported in the literature, marks a signif-
icant advancement in the field. The model utilizes data from
PlanetScope, Landsat and Sentinel-2 sensors and is based on a
simplified convolutional neural network (CNN) architecture,
LeNet, which facilitates easy training on standard computers
with minimal time requirements. Despite its simplicity, the
model demonstrates robustness, achieving accuracy metrics
over 96% in validation data. These results show the model
potential in transforming cloud and shadow detection in re-
mote sensing, combining ease of use with high accuracy.

Index Terms— Cloud Detection, Cloud Shadow Detec-
tion, Deep Learning, Remote Sensing, MultiSensor.

1. INTRODUCTION

The precise mapping of clouds and their shadows in remote
sensing (RS) is a critical aspect for ensuring the quality and
reliability of satellite imagery [1]. Accurate detection of these
features is essential for a variety of applications, including
climate monitoring, weather forecasting, and land cover map-
ping [2]. Clouds and their shadows can significantly mask
ground information, leading to inaccuracies in data interpre-
tation. Recent advances in deep learning (DL) have shown
promising results in addressing this challenge [2–5]. DL
models excel in extracting both spatial and spectral features,
which are crucial for effective cloud and shadow detection
in satellite imagery. These models, have demonstrated their
ability to handle complex cloud and cloud shadows segmen-
tation tasks efficiently. However, existing models often face

limitations when it comes to handling data from multiple
sensors or under varying conditions [6]. There is a growing
need for an algorithm capable of detecting clouds and cloud
shadows across different spatial resolutions, regions, tempo-
ralities, and sensors, without requiring significant relative or
absolute transformations of the original data. Transforma-
tions, typically used to standardize or normalize data, can
sometimes alter the intrinsic properties of the dataset, leading
to potential inaccuracies in the analysis. In this context, the
use of PlanetScope imagery [7] for training DL models is
strategic. PlanetScope offers a unique combination of tempo-
ral resolution and wide coverage, making it an ideal dataset
for developing a versatile cloud and cloud shadow detection
model. The challenge lies in creating a model that is not only
highly accurate but also adaptable to the diverse conditions.
These include multiple: spatial resolution, geographic areas,
RS acquisition dates, and RS data sources, such as various
Landsat and Sentinel-2 (S2) sensors. Additionally, the model
demonstrates robust performance in detecting the three main
types of clouds: cirrus, cumulus, and stratus. While there
have been attempts to create models for similar purposes,
many of these have fallen short in achieving the level of
adaptability and accuracy required for comprehensive cloud
and cloud shadow detection across diverse datasets [8–12].
The development of a model that overcomes these limitations
while maintaining high accuracy and efficiency in processing,
would mark a significant advancement in the field of RS.

2. RS DATA AND STUDY AREA DESCRIPTION

This study employs high spatial resolution satellite imagery
from three different optical sensors. PlanetScope, commonly
referred as Planet. PlanetScope imagery is renowned for its
fine spatial (3m) and temporal (daily) resolutions, making it
an ideal choice for detailed remote sensing analysis [13]. The
dataset encompasses two distinct types of PlanetScope tiles.
The first subset includes imagery from the year 2018 with
a 4-band configuration, providing essential spectral informa-
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tion for cloud and cloud shadow detection. The second subset
consists of more recent, 2023, tiles featuring 8-band config-
uration, offering enhanced spectral detail. For testing pur-
poses, the study further incorporates imagery from alternative
remote sensing sources, specifically S2 and various Landsat
sensors. These additional datasets encompass a diverse range
of geographic areas and acquisition dates, providing a rigor-
ous testing environment for the model’s adaptability and ac-
curacy. To build the training and validation data, two repre-
sentative sub-basins in Colombia were used: the Las Piedras
and Palacé river sub-basins [14]. In total, the entire study area
adds up to around 711 km2. These areas were strategically
chosen due to their location within the Intertropical Conver-
gence Zone, a region characterized by high cloud cover [14].
This choice ensures that the dataset includes a wide range
of cloud and cloud shadow scenarios, crucial for developing
a robust detection model. The total number of images and
dataset used for this study are presented in Table 1.

Table 1: Raw dataset collected

Las Piedras

Date #Tiles #Bands
Feb-19-2018 2 4
Jul-02-2018 4 4
Jan-03-2018 2 4
Aug-06-2018 2 4
Jul-07-2018 4 4

Aug-31-2018 2 4
Jan-26-2023 1 8
Jan-04-2023 2 8
Feb-05-2023 1 8
Feb-07-2023 1 8
Jan-25-2023 1 8

Palacé Nov-06-2018 2 4

3. PROPOSED APPROACH FOR CLOUD AND
CLOUD SHADOW DETECTION

This study presents a structured methodology optimized for
multispectral PlanetScope imagery that is also suitable for de-
tections in Landsat and S2 sensors. The approach is designed
to tackle the complexity of cloud and cloud shadow detection
across varying spatial and temporal resolutions, geographi-
cal regions, and sensor types. The workflow of the proposed
methodology is detailed in Figure 1.

3.1. PlanetScope Raw Data and Preprocessing

Multispectral imagery from the Planet Explorer website [13]
are chosen and downloaded. Following the acquisition of the
imagery specified in Table 1, it was necessary to execute a
cropping phase of the tiles to the designated study area. This
step allows optimizing computational resources. By focus-
ing solely on the area of interest, the demands on storage and

Fig. 1: General methodology.

processing cost required for subsequent data handling was re-
duced.

3.2. Radiometric Index Calculation and Feature Set Con-
figuration

To construct a robust feature set providing comprehensive in-
formation to the Convolutional Neural Network (CNN), a to-
tal of 18 radiometric indices were computed. These indices
were chosen for their ability to be derived from the minimum
of four spectral bands - Red, Green, Blue, and Near-Infrared
(RGB-NIR) - present in PlanetScope imagery, which typically
consists of 4 and 8 bands. The selection of these specific in-
dices ensures that the proposed methodology is not limited
to PlanetScope data, but is broadly applicable to most remote
sensing datasets, as they commonly include these four fun-
damental bands. The calculated indices include: ARVI, AT-
SAVI, BNDVI, CI, EVI, GCL, GDVI, GLI, IO, IPVI, NDTI,
NDVI, NDWI, CRI550, SAVI, SIPI, SR, and SRWI. The fea-
ture sets are subsequently formed by combining the original
spectral bands with these computed indices, resulting in en-
hanced images comprising 22 and 26 bands for the 4-band
and 8-band images, respectively. This approach enriches the
dataset, enabling the CNN to extract more nuanced informa-
tion for cloud and cloud shadow detection tasks.

3.3. Model Training, Validation and Inference

For this study, a LeNet-based architecture model was devel-
oped. For training and validation, a dataset was built after
marking some samples using a custom interface developed
using Python with GDAL, QT, and OpenCV libraries. The
training and validation process was initiated after artificially
balancing the raw dataset shown in Figure 2, meaning that the
number of instances in each class was equalized based on the
class with the highest occurrence in both datasets built from
the 4-band and 8-band images. The distribution of data was
80% for training and 20% for validation. It is important to re-
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call that training data is selected only from PlanetScope data.
But validation is performed by considering different sensors,
i.e., PlanetScope (3m), Landsat (30m) and S2 (10m).

Fig. 2: Raw Dataset Distribution for PlanetScope with 4 and
8 bands.

4. PRELIMINARY RESULTS AND DISCUSSIONS

Table 2 presents the quantitative validation results for the
models derived from the constructed datasets. The 22-band
feature set model, based on the 4-band images, and the 26-
band feature set model, based o the 8-band images, both
exhibit robust performance in terms of the accuracy metric.
It is observed that the model trained with the 8-band im-
ages achieves higher accuracy, attributable to its access to a
more broader spectral information. This expanded feature set
(26 instead of 22) enhances the model’s capacity to discern
between the background, clouds, and cloud shadows more
effectively. It is noteworthy that both models were trained in
less than two hours. Specifically, the training for the 22-band
based model was completed in 1.85 hours, and the training
for the 26-band based model was completed in 1.96 hours on
a system equipped with an Intel® Core™ i9-9900K CPU @
3.60GHz (16 CPUs), ∼3.6GHz and a NVIDIA GeForce RTX
3090 GPU. The final CNN configuration consisted of four
convolutional layers with varying filter counts, kernel sizes
set uniformly at 3x3, ReLu activation functions, and “same”
padding to maintain dimensionality. Strides were set at one
across all convolutional layers. Pooling layers alternated be-
tween max and average, with the introduction of dropout at
strategic points to mitigate overfitting, specifically set at 0.25
for all but the third convolutional layer where it was omitted.

Upon quantitative validation, the implemented models
were then subjected to inference on previously unseen im-
ages. These images varied in spatial resolution (3, 10, and 30
meters per pixel), covered different regions across Colombia,
were taken on different dates, and originated from multiple
sensors, including Landsat 5, 7, 8, and 9. Consistently favor-
able outcomes were observed across all scenarios. Figure 3
showcases a selection of results for PlanetScope, Landsat, and

Table 2: Validation results of the cloud and cloud shadows
detection models

Model Validation
Data

Accuracy

Trained
Epochs

Best Epoch

4 bands 96.88% 110/350 90

8 bands 99.56% 101/350 81

S2 data, where the left panel shows in white the clouds and
on black their corresponding shadows. These multiple-case
validations confirms the models’ robustness and adaptability
to diverse datasets and conditions. Furthermore, it is signif-
icant to highlight that these favorable results were achieved
without the need for any absolute or relative transformations
on the original data. This implies that the models’ efficacy
is not contingent on altering the raw satellite images through
methods such as normalization, standardization, or contrast
adjustment, which are commonly employed to homogenize
data before analysis. However, a simple scaling of data be-
tween 0 and 1 (reflectance range) is the sole modification
prior to the deep learning training, facilitating efficient con-
vergence.

(a) Planet result (b) Planet RGB

(c) Landsat 5 result (d) Landsat 5 RGB

(e) Sentinel 2 result (f) Sentinel 2 RGB

Fig. 3: Results of the model inference and corresponding
RGB images for selected test areas.
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5. CONCLUSIONS

In the conducted research, a DL model for cloud and cloud
shadow detection in multiresolution, multitemporal and mul-
tisensor images was developed. The presented model excels
in adaptability, efficiency, and accuracy for cloud and cloud
shadow detection across a range of remote sensing scenar-
ios. The foundational dataset for this model was sourced
from PlanetScope imagery. Its capability to function effec-
tively without the necessity of data transformations marks a
significant advancement in the field of remote sensing. The
model’s streamlined and efficient training process, completed
in under two hours, underscores its practicality, particularly
in real-world applications where computational resources are
generally limited. This efficiency is essential for applications
that require timely analysis and limited computational expen-
diture. Overall, this research contributes a groundbreaking
approach to cloud and cloud shadow detection. It represents
a substantial step forward in remote sensing technologies and
their applications, offering improved accuracy and efficiency
in areas such as environmental monitoring and agricultural
management, where reliable satellite imagery are crucial.
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